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1 Introduction

The primary goal of this project is to familiarize students with the methods and tools of digital design.
In order to make the project both interesting and useful, we will guide you through the implementation
of a CPU that is intended to be integrated on a modern SoC. Working alone or in teams of 2, you will
be designing a simple 3-stage CPU that implements the RISC-V ISA, developed here at UC Berkeley.
If you work in a team, you both must work on the project together (i.e. you are not allowed to divide up
the work), and you will both receive the same grade.

Your first and most important goal is to write a functional implementation of your processor. To
better expose you to real design decisions, you will also be tasked with improving the performance of
your processor. You will be required to meet a minimum performance to be specified later in the project.

You will use Verilog HDL to implement this system. You will be provided with some testbenches to
verify your design, but you will be responsible for creating additional testbenches to exercise your entire
design. Your target implementation technology will be the ASAP7 7nm Educational PDK, a predictive
model technology used for instruction. The project will give you experience designing synthesizeable
RTL (Register Transfer Level) code, resolving hazards in a simple pipeline, building interfaces, and
approaching system-level optimization.

Your first step will be to map our high level specification to a design which can be translated into
a hardware implementation. You will then generate and debug that implementation in Verilog. These
steps may take significant time if you do not put effort into your system architecture before attempting
implementation. After you have built a working design, you will be optimizing it for speed in the 7nm
technology that we have been using this semester.

1.1 RISC-V

The final project for this class will be a VLSI implementation of a RISC-V (pronounced risk-five)
CPU. RISC-V is an instruction set architecture (ISA) developed here at UC Berkeley. It was originally
developed for computer architecture research and education purposes, but recently there has been a
push towards commercialization and industry adoption. For the purposes of this lab, you don’t need to
delve too deeply into the details of RISC-V. However, it may be good to familiarize yourself with it, as
this will be at the core of your final project. Check out the official Instruction Set Manual and explore
http://riscv.org for more information.

• Read through sections 2.2 and 2.3 in the RISC-V Instruction Set Manual to understand how the
different types of instructions are encoded. Most of this should be familiar as it is similar to
MIPS.

• Read through sections 2.4, 2.5, and 2.6 in the Instruction Set Manual and think about how each
of the instructions will use the ALU.

You do not need to read 2.7 or 2.8, as you will not be implementing those instructions in the project.

1.2 Project phases

Your project will consist of two different phases: front-end and back-end. Within each phase, you will
have multiple checkpoints that will ensure you are making consistent progress. These checkpoints will

http://riscv.org/specifications/
http://riscv.org
http://riscv.org/specifications/
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contribute (although not significantly) to your final grade. You are free to make design changes after
they have been checked off if they will help subsequent phases or improve QoR.

In the first phase (front-end), you will design and implement a 3-stage RISC-V processor in Verilog,
and run simulations to test for functionality. At this point, you will only have a functional description
of your processor that is independent of technology (there are no standard cells yet). You have about
5 weeks to complete the first phase, but you are highly encouraged to try to finish each checkpoint
early, as each checkpoint will be released before the due date of the ongoing one. Everything will take
much longer than you expect, and finishing early gives you more time to improve your QoR (Quality of
Results, e.g. clock period).

In the second phase (back-end), you will implement your front-end design in the ASAP7 7nm kit
using the VLSI tools you used in lab. When you have finished phase 2, you will have a design that could
move onto fabrication if this were a real process. You will have about 3 weeks to complete the second
phase after its release.

1.3 Philosophy

This document is meant to describe a high-level specification for the project and its associated support
hardware. You can also use it to help lay out a plan for completing the project. As with any design
you will encounter in the professional world, we are merely providing a framework within which your
project must fit.

You should consider the GSI(s) a source of direction and clarification, but it is up to you to produce
a fully functional design, as well as a physical implementation. We will attempt to help, when possible,
but ultimately the burden of designing and debugging your solution lies on you.

1.4 General Project Tips

Be sure to use top-down design methodologies in this project. We began by taking the problem of
designing a basic computer system, modularizing it into distinct parts, and then refining those parts
into manageable checkpoints. You should take this scheme one step further; we have given you each
checkpoint, so break each into smaller, manageable pieces.

As with many engineering disciplines, digital design has a normal development cycle. In the norm,
after modularizing your design, your strategy should roughly resemble the following steps:

Design your modules well, make sure you understand what you want before you begin to code.

Code exactly what you designed; do not try to add features without redesigning.

Simulate thoroughly; writing a good testbench is as much a part of creating a module as actually
coding it.

Debug completely; anything which can go wrong with your implementation will.

Document your project thoroughly as you go. Your design review documents will help, but you
should never forget to comment your Verilog and to keep your diagrams up to date. Aside from the final
project report (you will need to turn in a report documenting your project), you can use your design
documents to help the debugging process. Finish the required features first. Attempt extra features after
everything works well.
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This project is divided into checkpoints. Each checkpoint will be due 1 to 2 weeks after its release,
but the next checkpoint will be released early. Use this to your advantage- try to get ahead so that you
have additional time to debug. Your TA will clarify the specific timeline for your semester.

The most important goal is to design a functional processor- this alone is 50-60% of the final grade,
and you must have it working completely to receive any credit for performance.

2 Front-end design (Phase 1)

The first phase in this project is designed to guide the development of a three-stage pipelined RISC-V
CPU that will be used as a base system for your back-end implementation.

Phase 1 will last for 5 weeks and has weekly checkpoints.

• Checkpoint 1: ALU design and pipeline diagram (due Thursday, November 5, 2020)

• Checkpoint 2: Core implementation (due Wednesday, November 18, 2020)

• Checkpoint 3: Core + memory system implementation (due Wednesday, December 2, 2020)

2.1 Project Setup

The skeleton files for the project will be delivered as a git repository provided by the staff. You should
clone this repository as follows. It is highly recommended to familiarize yourself with git and use it to
manage your development.

% git clone /home/ff/eecs151/labs/project_skeleton /path/to/my/project

To get a team repo, fill out the google form via the link on Piazza with your team information. Please
do this even if you are working alone, as these git repos will be used for part of the final checkoff. Once
it is setup you will be given a team number, and you will be given a repo hosted on the servers for
version control for the project. You should be able to add the remote host of “geecs151:teamXX” where
“XX” is the team number that you are assigned. An example working flow to be able to pull from the
skeleton as well as push/pull with your team repository is shown below:

% git clone /home/ff/eecs151/labs/project_skeleton /path/to/my/project
% git remote add myOrigin geecs151:teamXX

Then to pull changes from the skeleton, you would need to type:

% git pull origin master

To pull changes from your team repository you would type:

% git pull myOrigin master

And to push changes to your team repository (please do not attempt to push to the skeleton reposi-
tory), you would usually want to pull first (above) and then type:

% git push myOrigin master
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3 Checkpoint #1: ALU design and pipeline diagram

The ALU that we will implement in this lab is for a RISC-V instruction set architecture. Pay close
attention to the design patterns and how the ALU is intended to function in the context of the RISC-V
processor. In particular it is important to note the separation of the datapath and control used in this
system which we will explore more here.

The specific instructions that your ALU must support are shown in the tables below. The branch
condition should not be calculated in the ALU. Depending on your CPU implementation, your ALU
may or may not need to do anything for branch, jump, load, and store instructions (i.e., it can just output
0).

3.1 Making a pipeline diagram

The first step in this project is to make a pipeline diagram of your processor, as described in lecture. You
only need to make a diagram of the datapath (not the control). Each stage should be clearly separated
with a vertical line, and flip-flops will form the boundary between stages. It is a good idea to name
signals depend on what stage they are in (eg. s1 killf, s2 rd0). Also, it is a good idea to separately
name the input/output (D/Q) of a flip flop (eg. s0 next pc, s1 pc). Draw your diagram in a drawing
program(Inkscape, Google Drawings, draw.io or any program you want), because you will need to keep
it up-to-date as you build your processor. It helps to print out scratch copies while you are debugging
your processor and to keep your drawings revision-controlled with git. Once you have finished your
initial datapath design, you will implement the main building block in the datapath—the ALU.

3.2 ALU functional specification

Given specifications about what the ALU should do, you will create an ALU in Verilog and write a test
harness to test the ALU.

The encoding of each instruction is shown in the table below. There is a detailed functional de-
scription of each of the instructions in Section 2.4 of the Instruction Set Manual. Pay close attention
to the functional description of each instruction as there are some subtleties. Also, note that the LUI
instruction is somewhat different from the MIPS version of LUI which some of you may be used to.

http://riscv.org/specifications/
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode SB-type
imm[31:12] rd opcode U-type

imm[20|10:1|11|19:12] rd opcode UJ-type

RV32I Base Instruction Set
imm[31:12] rd 0110111 LUI rd,imm
imm[31:12] rd 0010111 AUIPC rd,imm

imm[20|10:1|11|19:12] rd 1101111 JAL rd,imm
imm[11:0] rs1 000 rd 1100111 JALR rd,rs1,imm

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ rs1,rs2,imm
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE rs1,rs2,imm
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT rs1,rs2,imm
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE rs1,rs2,imm
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU rs1,rs2,imm
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU rs1,rs2,imm

imm[11:0] rs1 000 rd 0000011 LB rd,rs1,imm
imm[11:0] rs1 001 rd 0000011 LH rd,rs1,imm
imm[11:0] rs1 010 rd 0000011 LW rd,rs1,imm
imm[11:0] rs1 100 rd 0000011 LBU rd,rs1,imm
imm[11:0] rs1 101 rd 0000011 LHU rd,rs1,imm

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB rs1,rs2,imm
imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH rs1,rs2,imm
imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW rs1,rs2,imm

imm[11:0] rs1 000 rd 0010011 ADDI rd,rs1,imm
imm[11:0] rs1 010 rd 0010011 SLTI rd,rs1,imm
imm[11:0] rs1 011 rd 0010011 SLTIU rd,rs1,imm
imm[11:0] rs1 100 rd 0010011 XORI rd,rs1,imm
imm[11:0] rs1 110 rd 0010011 ORI rd,rs1,imm
imm[11:0] rs1 111 rd 0010011 ANDI rd,rs1,imm

0000000 shamt rs1 001 rd 0010011 SLLI rd,rs1,shamt
0000000 shamt rs1 101 rd 0010011 SRLI rd,rs1,shamt
0100000 shamt rs1 101 rd 0010011 SRAI rd,rs1,shamt
0000000 rs2 rs1 000 rd 0110011 ADD rd,rs1,rs2
0100000 rs2 rs1 000 rd 0110011 SUB rd,rs1,rs2
0000000 rs2 rs1 001 rd 0110011 SLL rd,rs1,rs2
0000000 rs2 rs1 010 rd 0110011 SLT rd,rs1,rs2
0000000 rs2 rs1 011 rd 0110011 SLTU rd,rs1,rs2
0000000 rs2 rs1 100 rd 0110011 XOR rd,rs1,rs2
0000000 rs2 rs1 101 rd 0110011 SRL rd,rs1,rs2
0100000 rs2 rs1 101 rd 0110011 SRA rd,rs1,rs2
0000000 rs2 rs1 110 rd 0110011 OR rd,rs1,rs2
0000000 rs2 rs1 111 rd 0110011 AND rd,rs1,rs2

imm[11:0] rs1 001 rd 1110011 CSRRW rd,rs1,imm
imm[11:0] rs1 101 rd 1110011 CSRRWI rd,rs1,imm
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3.3 Project Files

We have provided a skeleton directory structure to help you get started.
Inside, you should see a src folder, as well as a tests folder. The src folder contains all of

the verilog modules for this phase, and the tests folder contains some RISC-V test binaries for your
processor.

3.4 Testing the Design

Before writing any of modules, you will first write the tests so that once you’ve written the modules
you’ll be able to test them immediately. This is effectively Test-driven Development (TDD). Writing
tests first is good practice- it forces you to write thorough tests, and ensures that tests will exist when
you need to rapidly iterate through module design tweaks. Thorough understanding of the expected
functionality is key to writing good tests (or RTL). You will be expected to write unit tests for any mod-
ules that you design and implement and write integration tests. Unit tests will verify the functionality
of individual modules against your specification. Integration tests verify that all the modules work as a
system once you connect them together.

3.4.1 Verilog Testbench

One way of testing Verilog code is with testbench Verilog files. The outline of a test bench file has been
provided for you in ALUTestbench.v. There are several key components to this file:

• `timescale 1ns / 1ps - This specifies, in order, the reference time unit and the precision.
This example sets the unit delay in the simulation to 1ns (i.e. #1 = 1ns) and the precision to 1ps
(i.e. the finest delay you can set is #0.001 = 1ps).

• The clock is generated by the code below. Since the ALU is only combinational logic, this is not
necessary, but it will be a helpful reference once you have sequential elements.

– The initial block sets the clock to 0 at the beginning of the simulation. You should be
sure to only change your stimulus when the clock is falling, since the data is captured on
the rising edge. Otherwise, it will not only be difficult to debug your design, but it will also
cause hold time violations when you run gate level simulation.

– You must use an always block without a sensitivity list (the @ part of an always statement)
to cause the clock to run automatically.

parameter Halfcycle = 5; //half period is 5ns
localparam Cycle = 2*Halfcycle;
reg Clock;
// Clock Signal generation:
initial Clock = 0;
always #(Halfcycle) Clock = ˜Clock;

• task checkOutput; - this task contains Verilog code that you would otherwise have to copy
paste many times. Note that it is not the same thing as a function (as Verilog also has functions).

• {$random} & 31'h7FFFFFFF - $random generates a pseudorandom 32-bit integer. A
bitwise AND will mask the result for smaller bit widths.



Version 4.1 November 18, 2020 8

For these two modules, the inputs and outputs that you care about are opcode, funct,
add_rshift_type, A, B and Out. To test your design thoroughly, you should work through every
possible opcode, funct, and add_rshift_type that you care about, and verify that the correct
Out is generated from the A and B that you pass in.

The test bench generates random values for A and B and computes REFout = A + B. It also
contains calls to checkOutput for load and store instructions, for which the ALU should perform
addition. It will be up to you to write tests for the remaining combinations of opcode, funct, and
add_rshift_type to test your other instructions.

Remember to restrict A and B to reasonable values (e.g. masking them, or making sure that they are
not zero) if necessary to guarantee that a function is sufficiently tested. Please also write tests where
the inputs and the output are hard-coded. These should be corner cases that you want to be certain are
stressed during testing.

3.4.2 Test Vector Testbench

An alternative way of testing is to use a test vector, which is a series of bit arrays that map to the inputs
and outputs of your module. The inputs can be all applied at once if you are testing a combinational
logic block or applied over time for a sequential logic block (e.g. an FSM).

You will write a Verilog testbench that takes the parts of the bit array that correspond to the inputs
of the module, feeds those to the module, and compares the output of the module with the output bits
of the bit array. The bit vector should be formatted as follows:

[106:100] = opcode
[99:97] = funct
[96] = add_rshift_type
[95:64] = A
[63:32] = B
[31:0] = REFout

Open up the skeleton provided to you in ALUTestVectorTestbench.v. You need to complete the
module by making use of $readmemb to read in the test vector file (named testvectors.input),
writing some assign statements to assign the parts of the test vectors to registers, and writing a for loop
to iterate over the test vectors.

The syntax for a for loop can be found in ALUTestbench.v. $readmemb takes as its arguments
a filename and a reg vector, e.g.:

reg [5:0] bar [0:20];
$readmemb(\foo.input", bar);

3.4.3 Writing Test Vectors

Additionally, you will also have to generate actual test vectors to use in your test bench. A test vector
can either be generated in Verilog (like how we generated A, B using the random number generator and
iterated over the possible opcodes and functs), or using a scripting language like Python. Since we have
already written a Verilog test bench for our ALU and decoder, we will tackle writing a few test vectors
by hand, then use a script to generate test vectors more quickly.
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Test vectors are of the format specified above, with the 7 opcode bits occupying the left-most bits.
In the tests folder, create the file testvectors.input and add test vectors for the following
instructions to the end (i.e. manually type the 107 zeros and ones required for each test vector): SLT,
SLTU, SRA, and SRL.

In the same directory, we’ve also provided a test vector generator ALUTestGen.py written in
Python, which is a popular language used for scripting. We used this generator to generate the test
vectors provided to you. If you’re curious, you can read the next paragraph and poke around in the file.
If not, feel free to skip ahead to the next section.

The script ALUTestGen.py is located in tests. Run it so that it generates a test vector file in
the tests folder. Keep in mind that this script makes a couple assumptions that aren’t necessary and
may differ from your implementation:

• Jump, branch, load and store instructions will use the ALU to compute the target address.

• For all shift instructions, A is shifted by B. In other words, B is the shift amount.

• For the LUI instruction, the value to load into the register is fed in through the B input.

You can either match these assumptions or modify the script to fit with your implementation. All the
methods to generate test vectors are located in the two Python dictionaries opcodes and functs.
The lambda methods contained (separated by commas) are respectively: the function that the operation
should perform, a function to restrict the A input to a particular range, and a function to restrict the B
input to a particular range.

If you modify the Python script, run the generator to make new test vectors. This will overwrite
the testvectors.input file, so if you want to save your handwritten test vectors, rename the file
before running the script, then append them once the file has been generated.

% python ALUTestGen.py

This will write the test vector into the file testvectors.input. Use this file as the target test vector
file when loading the test vectors with $readmemb.

3.5 Writing Verilog Modules

For this exercise, we’ve provided the module interfaces for you. They are logically divided into a
control (ALUdec.v) and a datapath (ALU.v). The datapath contains the functional units while control
contains the necessary logic to drive the datapath. You will be responsible for implementing these two
modules. Descriptions of the inputs and outputs of the modules can be found in the first few lines of each
file. The ALU should take an ALUop and its two inputs A and B, and provide an output dependent on the
ALUop. The operations that it needs to support are outlined in the Functional Specification. Don’t worry
about sign extensions–they should take place outside of the ALU. The ALU decoder uses the opcode,
funct, and add_rshift_type to determine the ALUop that the ALU should execute. The funct
input corresponds to the funct3 field from the ISA encoding table. The add_rshift_type input
is used to distinguish between ADD/SUB, SRA/SRL, and SRAI/SRLI; you will notice that each of
these pairs has the same opcode and funct3, but differ in the funct7 field.

You will find the case statement useful, which has the following syntax:
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always@(*) begin
case(foo)

3'b000: // something happens here
3'b001: // something else happens here
3'b010, 3'b011: // you can have more than

// one case do the same thing
default: // everything else

endcase
end

To make your job easier, we have provided two Verilog header files: Opcode.vh and ALUop.vh.
They provide, respectively, macros for the opcodes and functs in the ISA and macros for the different
ALU operations. You should feel free to change ALUop.vh to optimize the ALUop encoding, but if
you change Opcode.vh, you will break the test bench skeleton provided to you. You can use these
macros by placing a backtick in front of the macro name, e.g.:

case(opcode)
`OPC_STORE:

is the equivalent of:

case(opcode)
7'b0100011:

3.6 Running the Simulation

Open the file sim-rtl.yml, set the testbench’s name to be ALUTestbench.

tb_name: &TB_NAME "ALUTestbench"

By typing make sim-rtl you will run the ALU simulation.You may change the testbench’s
name to ALUTestVectorTestbench to use the test vector testbench.

Once you have a working design, you should see the following output when you run either of the
given testbenches:

# ALL TESTS PASSED!

To clean the simulation directory from previous simulations’ files, type make clean.

3.7 Viewing Waveforms

As in the previous labs, you should use DVE to view waveforms.

1. List of the modules involved in the test bench. You can select one of these to have its signals
show up in the object window.

2. Object window - this lists all the wires and regs in your module. You can add signals to the
waveform view by selecting them, right-clicking, and doing Add ¿ To Wave ¿ Selected Signals.
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3. Waveform viewer - The signals that you add from the object window show up here. You can
navigate the waves by searching for specific values, or going forward or backward one transition
at a time.

As an example of how to use the waveform viewer, suppose you get the following output when you run
ALUTestbench:

# FAIL: Incorrect result for opcode 0110011, funct: 101:, add_rshift_type: 1
# A: 0x92153524, B: 0xffffde81, DUTout: 0x490a9a92, REFout: 0xc90a9a92

The $display() statement actually already tells you everything you need to know to fix your bug,
but you’ll find that this is not always the case. For example, if you have an FSM and you need to look
at multiple time steps, the waveform viewer presents the data in a much neater format. If your design
had more than one clock domain, it would also be nearly impossible to tell what was going on with only
$display() statements.

Add all the signals from ALUTestbench to the waveform viewer and you see the following win-
dow: The two highlighted boxes contain the tools for navigation and zoom. You can hover over the
icons to find out more about what each of them do. You can find the location (time) in the waveform
viewer where the test bench failed by searching for the value of DUTout output by the $display()
statement above (in this case, 0x490a9a92:

1. Selecting DUTout

2. Clicking Edit > Wave Signal Search > Search for Signal Value > 0x490a9a92

Now you can examine all the other signal values at this time. Compare the DUTout and REFout
values at this time, and you should see that they are similar but not quite the same. From the opcode,
funct, and add_rshift_type, you know that this is supposed to be an SRA instruction, but it
looks like your ALU performed a SRL instead. However, you wrote

Out = A >>> B[4:0];

That looks like it should work, but it doesn’t! It turns out you need to tell Verilog to treat B as a signed
number for SRA to work as you wish. You change the line to say:

Out = $signed(A) >>> B[4:0];

After making this change, you run the tests again and cross your fingers. Hopefully, you will see the
line:

# ALL TESTS PASSED!

If not, you will need to debug your module until all test from the test vector file and the hard-coded test
cases pass.
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3.8 Checkpoint #1: Simple test program

Checkoff due: Thursday, November 5, 2020
Congratulations! You’ve started the design of your datapath by drawing a pipeline diagram, and

written and thoroughly tested a key component in your processor. You should now be well-versed in
testing Verilog modules. Please answer the following questions to be checked off by a TA:

1. Show your pipeline diagram, and explain when writes and reads occur in the register file and
memory relative to the pipeline stages.

2. Show your working ALU test bench files to your TA and explain your hard-coded cases. You
should also be able to show that the tests for the test vectors generated by the Python script and
your hard-coded test vectors both work.

3. In ALUTestbench, the inputs to the ALU were generated randomly. When would it be preferable
to perform an exhaustive test rather than a random test?

4. What bugs, if any, did your test bench help you catch?

5. For one of your bugs, come up with a short assembly program that would have failed had you not
caught the bug. In the event that you had no bugs and wrote perfect code the first time, come up
with an assembly program to stress the SRA bug mentioned in the above section.

4 Checkpoint #2: Fully functioning core

4.1 Additional Instructions

In order to run the testbenches, there are a few new instructions that need to be added for help in
debugging/creating testbenches. Read through Chapter 9 in the RISC-V specification. A CSR (or
control status register) is some state that is stored independent of the register file and the memory.
While there are 212 possible CSR addresses, you will only use one of them (tohost = 0x51E). The
tohost register is monitored by the test harness, and simulation ends when a value is written to this
register. A value of 1 indicates success, a value greater than 1 gives clues as to the location of the failure.

There are 2 CSR related instructions that you will need to implement:

1. csrw tohost,t2 (short for csrrw x0,csr,rs1 where csr = 0x51E)

2. csrwi tohost,1 (short for csrrwi x0,csr,zimm where csr = 0x51E)

csrw will write the value from register in rs1. csrwi will write the immediate (stored in rs1) to
the addressed csr. Note that you do not need to write to rd (writing to x0 does nothing).

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode
12 5 3 5 7

source/dest source CSRRW dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
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4.2 Details

Your job is to implement the core of the 3-stage RISC-V CPU.

4.3 File Structure

Implement the datapath and control logic for your RISC-V processor in the file Riscv151.v. Make
sure that the inputs and outputs remain the same, since this module connects to the memory system
for system-level testing. If you look at riscv_test_harness.v you can see a testbench that
is provided. Target this testbench in your sim-rtl.yml file by changing the tb_name key to
rocketTestHarness.

4.4 Running the Test

This testbench will load a program into the instruction memory, and will then run until the exit code
register has been set. There is also a timeout to make sure that the simulation does not run forever. This
will also tell you whether or not your testbench is passing the test. You should only be running this test
suite after you have eliminated some of the bugs using single instruction tests described below.

4.5 Running assembly tests

We have provided a suite of assembly tests to help you debug all of the instructions you need to estimate.
To run all of them:

make sim-rtl test_asm=all

This will generate .out files in the asm output/ directory, and summarize which tests passed and
failed. You can also run a single asm test with the following command:

make sim-rtl test_asm=simple.out

If you would like to generate waveforms for a single test:

make sim-rtl test_asm=simple.vpd

’simple’ may be replaced with any of the available tests defined in the Makefile.
You can read the assembly code of the programs by looking at the dump file. Comments in the code

will help you understand what is happening.

cd tests/asm/
vim addi.dump

Last, you can see the hex code that is loaded directly into the memory by looking at the hex file.

cd tests/asm/
vim addi.hex
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4.6 Checkpoint #2 Deliverables

Checkoff due: Wednesday, November 18, 2020

Congratulations! You’ve started the design of your datapath by implementing your pipeline dia-
gram, and written and thoroughly tested a key component in your processor and should now be well-
versed in testing Verilog modules. Please answer the following questions to be checked off by a TA.

1. Show that all of the assembly tests pass

2. Show your final pipeline diagram, updated to match the code.

5 Checkpoint #3: Cache

A processor operates on data in memory. Memory can hold billions of bits, which can either be instruc-
tions or data. In a VLSI design, it is a very bad idea to store this many bits close to the processor. The
chip area required would be huge - consider how many DRAM chips your PC has, and that DRAM cells
are much smaller than SRAM cells (which can actually be implemented in the same CMOS process).
Moreover, the entire processor would have to slow down to accommodate delays in the large memory
array. Instead, caches are used to create the illusion of a large memory with low latency.

Your task is to implement a (relatively) simple cache for your RISC-V processor, based on some
predefined SRAM macros (memory arrays) and the interface specified below.

5.1 Cache overview

When you request data at a given address, the cache will see if it is stored locally. If it is (cache hit), it
is returned immediately. Otherwise if it is not found (cache miss), the cache fetches the bits from the
main memory.

Caches store data in “ways.” A way is a logical element which contains valid bits, tag bits, and data.
The simplest type of cache is direct-mapped (a 1-way cache). A cache stores data in larger units (lines)
than single words. In each way, a given address may only occupy a single location, determined by the
lowest bits of the cache line address. The remaining address bits are called the “tag” and are stored so
that we can check if a given cache line belongs to a given address. The valid bit indicates which lines
contain valid data.

Multi-way caches allow more flexibility in what data is stored in the cache, since there are multiple
locations for a line to occupy (the number of ways). For this reason, a ”replacement policy” is needed.
This is used to decide which way’s data to evict when fetching new data. For this project you may use
any policy you wish, but pseudo-random is recommended.

5.2 Guidelines and requirements

You have been given the interface of a cache (Cache.v) and your next task is to implement the cache.
EECS151 students should build a direct-mapped cache, and EECS251 students are required to imple-
ment a cache that either:

1. is configurable to be either direct-mapped or at least 2-way set associative; or



Version 4.1 November 18, 2020 15

2. is set-associative with configurable associativity.

You are welcome to implement a more performant cache if you desire.
Your cache should be at least 512 bytes; if you wish to increase the size, implement the 512 bytes

cache first and upgrade later.
Use the SRAMs that are available in
/home/ff/eecs151/hammer/src/hammer-vlsi/technology/asap7/sram compiler/

memories/behavioral/sram behav models.v
for your data and tag arrays.
The pin descriptions for these SRAMs are as follows:
A address
CE clock edge
OEB output enable bar (tie this to 0)
WEB write enable bar (1 is a read, 0 is a write)
CSB chip select bar (tie this to 0)
BYTEMASK write byte mask
I write data
O read data

You should use cache lines that are 512 bits (16 words) for this project. The memory interface is
128 bits, meaning that you will require multiple (4) cycles to perform memory transactions.

Below find a description of each signal in Cache.v:
clk clock
reset reset
cpu req valid The CPU is requesting a memory transaction
cpu req rdy The cache is ready for a CPU memory transaction
cpu req addr The address of the CPU memory transaction
cpu req data The write data for a CPU memory write (ignored on reads)
cpu req write The 4-bit write mask for a CPU memory transaction (each bit corresponds to the

byte address within the word). 4’b0000 indicates a read.
cpu resp val The cache has output valid data to the CPU after a memory read
cpu resp data The data requested by the CPU
mem req val The cache is requesting a memory transaction to main memory
mem req rdy Main memory is ready for the cache to provide a memory address
mem req addr The address of the main memory transaction from the cache. Note that this address

is narrower than the CPU byte address since main memory has wider data.
mem req rw 1 if the main memory transaction is a write; 0 for a read.
mem req data valid The cache is providing write data to main memory.
mem req data ready Main memory is ready for the cache to provide write data.
mem req data bits Data to write to main memory from the cache (128 bits/4 words).
mem req data mask Byte-level write mask to main memory. May be 16’hFFFF for a full write.
mem resp val The main memory response data is valid.
mem resp data Main memory response data to the cache (128 bits/4 words).

To design your cache, start by outlining where the SRAMs should go. You should include an SRAM
per way for data, and a separate SRAM per way for the tags. Depending on your implementation, you
may want to implement the valid bits in flip flops or as part of the tag SRAM.
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Next you should develop a state machine that covers all the events that your cache needs to handle
for both hits and misses. You can do it without an explicit state machine, but you will suffer. Keep in
mind you will need to write any valid data back to main memory before you start refilling the cache (you
can use a write-back or a write-through policy). Both of these transactions will take multiple cycles.

5.3 Changes to the flow for this checkpoint

You should now be able to pass the bmark test. The test suite includes many C programs that do
various things to test your processor and cache implementation. You can observe the number of cycles
that each bmark test takes to run by opening bmark output/*.out and taking note of the number
on the last line. The make sim-rtl test bmark=all target will also print this number for you.
To run a specific benchmark (e.g., cachetest), run

make sim-rtl test_bmark=cachetest.out

After completing your cache, run the tests with both the cache included and with the fake memory
(no cache mem) included. To use no cache mem be sure to have +define+no cache mem in the
simOptions variable in the sim-rtl.yml file. To use your cache, comment out +define+no cache mem.
Take note of the cycle counts for both, you should see the cycle counts increase when you use the cache.

5.4 Checkpoint #3 Deliverables

Checkoff due: Wednesday, December 2, 2020

1. Show that all of the assembly tests and final pass using the cache

2. Show the block diagram of your cache

3. What was the difference in the cycle count for the bmark test with the perfect memory and the
cache?

4. Show your final pipeline diagram, updated to match the code

6 Checkpoint #4: Synthesis, PAR, & Power

6.1 Performing Synthesis and PAR

Start this checkpoint by backing up your design, and pulling the update from origin.

The setup for Synthesis, and PAR is the similar to what we have used in the labs during the class,
with some formatting differences. The synthesis-only constraints have been moved out of design.yml
into syn.yml. Similarly, PAR constraints are now in par.yml. This is to avoid having the Makefile
re-synthesize if you are just modifying PAR-only constraints. In par.yml, there is now extra guid-
ance for how to do placement constraints. Based on how you implemented the caches from the previous
checkpoint, you will need to modify these constraints to match the master SRAM cell used as well as
the path. Now you should be ready to proceed to Synthesis and PAR. As in the previous labs, execute
the following:
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export HAMMER_HOME=$PWD/hammer
source hammer/sourceme.sh

The first thing you should do before simulating, is to make the SRAM libraries, with the command:

make srams

If you want to make sure the RTL has been pointed to correctly, you can try running the asm tests
from this environment. To do so, type the following commands:

make sim-rtl test_asm=all

The command generates the simv file, which is the simulation executable, then iterates through all
the asm tests using the root Makefile. If everything looks fine, you can proceed to Synthesis and
PAR:

make clean
make srams
make syn
make par

If everything went smoothly, you should now have a circuit laid out. To view the layout, go to
build/par-rundir/ directory and type

./generated_scripts/open_chip

You are expected to record and document your area, power and clock frequency performance (as
determined by your critical path). To verify that your design works after PAR, use the following com-
mands:

make sim-gl-par test_asm=all

Some final notes:

• You may also want to generally make sure that the post-synthesis netlist passes tests before mov-
ing onto post-PAR simulation, because the latter can be slower and will complicate your debug-
ging with any PAR-related failures you may have (e.g. incomplete wiring of signal or clock nets
due to a bad floorplan).

• There is a new constraint added to syn.tcl under the key vlsi.inputs.delays. The ex-
ternal memory model in riscv test harness.v generates a delayed version of the signals
going into your CPU (see the parameter INPUT DELAY). Annotating these delays for synthe-
sis/PR is necessary in order capture this effect when the tools perform timing analysis. If you are
curious, this gets translated into build/syn-rundir/pin constraints fragment.sdc
as input to synthesis. After synthesis, the relevant pin delays are encoded in
build/syn-rundir/riscv top.mapped.sdc. These are Synopsys Design Constraint
format files. Do not touch this delay constraint except to update the value as your clock period
divided by 5.

• As described in Lab 6, the ASAP7 dummy SRAMs do not have complete timing information.
This is most apparent in gate-level simulations because the SRAMs do not provide any SDF
timing annotation. You may find that despite meeting timing in synthesis and PAR, you will
likely need to increase the gate-level simulation clock period for the benchmarks to pass.
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7 Beyond Checkpoint #4: CPU Optimization

7.1 Optimizing for frequency

Beyond functionality, your final project grade will be determined by the maximum operating frequency
of your processor, determined by the critical path. You will also want to optimize for the number of
cycles that your processor takes to execute certain programs, more on that later. The critical path will
be dependent on how aggressively you ask the tools to optimize the design, by changing the target clock
period in the syn.yml file.

When Innovus is finished, look at the timing report for the critical path. In some cases, it is possible
to modify your Verilog to improve the critical path by moving pipeline stage registers. However in other
cases, timing can only be improved by tweaking settings in syn.yml and par.yml.

Be sure to backup (meaning check in or branch) your working design before attempting to move
logic, because functionality is worth much more of your grade than maximum frequency.

You are allowed to add additional pipeline stages, however this is highly discouraged because you
can easily introduce more hazards. In a real processor design, extra stages will cause more NOPs in
your pipeline, so even though frequency can be increased, total execution time could increase. Your
final performance metric is not only based on the clock speed at which your design will run, so keep
that in mind before heavily modifying your design.

Note for bonus grading: due to the SRAM timing issue described above, the maximum frequency
you achieved in PAR (not gate-level simulation) is most accurate and should be what you report for
frequency.

7.2 Optimizing for number of cycles

We are providing you tests that are the output of example C programs to run for your processor. They
are meant to be a representative example of different types of programs that each have different reasons
why they may take extra cycles to execute, for a variety of reasons including, but not limited to cache
misses, and branch/jump stalls. A more complicated cache structure may be able to reduce some of the
time spent waiting for memory accesses, but it may not be optimal for all cases. If you implement a
configurable cache you are allowed to set the cache settings differently on a per test basis, you will need
to add those pins to the top level Riscv151 file as well as the testbench with compile flags for VCS. In
terms of dealing with branching and jumping, you can implement any type of branch predictor that you
want to. A branch predictor in its simplest form will always choose to take (or not take) the branch and
then figure out if it was incorrect, and if so go back to where the instruction memory should have gone,
making sure that any additional instructions that were started do not change the state of the CPU. This
means that there should be no writes to memory or any registers for those instructions.

The list of final tests are contained within the Makefile under the variable bmark tests, which
include a few tests that are meant to actually test the performance of your design. These tests are longer
C programs that are meant to test different aspects of your design and how you handle different types
of hazards. To run these longer tests you can run the following commands, like in checkpoint #3:

make sim-rtl test_bmark=all

You may need to increase the number of cycles for timeout for some of the longer tests (like sum,
replace and cachetest) to pass.
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7.3 Optimizing for power

DISCLAIMER: The infrastructure to do power analysis in this project is very different from gate-level
simulation and power analysis so far. Doing this optimization is purely optional and should only be
tried after you can pass the benchmarks normally! Proceed at your own risk!

You have the ability to also find out the power consumption of your processor for the various pro-
vided benchmarks. The value of this is to figure out whether the way you wrote your logic is efficient
and avoids extra switching activity. Simplify instruction decode logic, forwarding paths, etc. can result
in lower power consumption!

Near the bottom of sim-gl-par.yml, you will see a few lines:

execute_sim: false
# Below is for power analysis. See the spec for instructions!
# execution_flags_append:
# - "+loadmem=../../tests/asm/addi.hex"
# - "+max-cycles=10000"

If you reverse the comments (i.e. comment out execute sim: false and uncomment the
rest), this tells Hammer to run the simv executable with the addi test, instead of having the Makefile
in the root folder run the executable. This is currently the only way that we can get Hammer currently
to generate the SAIF file with our benchmark hex files. To proceed with the simulation of addi in this
case:

make sim-gl-par test_asm=addi.out

You will find that it will do a simulation twice due to how the root Makefile is configured. The
first one should pass (after a lot of printing each cycle number), while the second one should also pass
like you have seen so far—ignore this second simulation. You should now see an ucli.saif file in
build/sim-rundir. Then, as in previous labs, run Voltus:

make power-par

And you should get static and dynamic power reports in build/power-rundir.

Some closing recommendations:

• This infrastructure only allows us to run one benchmark at a time. To run a different benchmark,
replace the hex file in the execution flags append list, and alter the max-cycles value
as necessary (see the * timeout cycles variables in the root Makefile for the numbers).

• Due to the ASAP7 PDK’s dummy SRAMs, we can’t measure SRAM power, and thus can’t find
out how power-efficient our caching is. Therefore, the best benchmarks to run would be an
arithmetic-heavy one that relies heavily on the register file (but the provided benchmarks require
memory accesses). If you have lots of time on your hand, we encourage you to find power
numbers for the final benchmark, but you will not be graded on power performance.
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8 Final Project Deliverables

Everything due: Friday, December 11, 2020
By now you should have designed a fully-functional processor from scratch that could be taped-

out in silicon. Your design should pass all assembly tests at your reported maximum frequency. Your
design should also pass all of the benchmark tests in at your reported maximum frequency, and you
should report the cycle count for each of those tests. By the due date (Friday, December 11, 2020), each
team needs to push their final commits to their team’s git repository. Only the final commit before the
due date will be graded, so be very, very careful that you have submitted everything required. To be
graded you must submit the following items:

• src/*.v

• build/syn-rundir/reports/*

• build/par-rundir/timingReports/*

• build/par-rundir/innovus.log*

These files will be used to check processor functionality and will show us your critical path, max-
imum operating frequency and area. During the interview session (Tuesday, December 8, 2020), the
professors and the GSI will be interviewing each team to gauge understanding of various concepts
learned in the project, understand more about each team’s design process, and provide feedback. Your
final report does not need to be long, but needs to answer the following questions:

1. Show the final pipeline diagram

2. What is the post-synthesis critical path length? What sections of the processor does the critical
path pass through? Why is this the critical path?

3. Show a screenshot of the final floorplan

4. What is the post-place-and-route critical path length? What sections of the processor does the
critical path pass through? Why is this the critical path? If it is different than the post-synthesis
critical path, why?

5. What is the area utilization of the final design?

6. What is the Innovus-estimated power consumption of the final design?

7. What is the number of cycles that your design takes to run the benchmarks? What changes/optimizations
have you done to try and optimize for these tests?

8. Is there anything you would like to tell the staff before we grade your project?

If you worked with a partner you do not need separate reports. If you are having issues with your
partner please contact the GSI privately as soon as possible.
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9 Grading

9.1 EECS 151:

70% Functionality at project due date: Your design will be subjected to a comprehensive test suite and
your score will reflect how many of the tests your implementation passes.

25% Final Report and Final Interview: If your design is not 100% functional, this is your opportunity
explain your bugs and recoup points.

5% Checkpoints: Each check-off is worth 1.25%. If you accomplished all of your checkpoints on time,
you will receive full credit in this category.

Bonus 5% Performance at project due date: You must have a fully working design to score points in
this section. You will receive up to 5 bonus points as your performance improves relative to your
peers. Performance will be calculated using the Iron Law: IPC * F

9.2 EECS 251A:

60% Functionality at project due date: Your design will be subjected to a comprehensive test suite and
your score will reflect how many of the tests your implementation passes.

10% Set-Associative Cache: Implementation and performance of the configurable set-associative cache.

25% Final Report and Final Interview: If your design is not 100% functional, this is your opportunity
explain your bugs and recoup points.

5% Checkpoints: Each check-off is worth 1.25%. If you accomplished all of your checkpoints on time,
you will receive full credit in this category.

Bonus 5% Performance at project due date: You must have a fully working design to score points in
this section. You will receive up to 5 bonus points as your performance improves relative to your
peers. Performance will be calculated using the Iron Law: IPC * F
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