
EECS 151/251A FPGA Lab

Lab 2: Introduction to FPGA Development

Prof. Sophia Shao
TAs: Harrison Liew, Charles Hong, Jingyi Xu, Kareem Ahmad, Zhenghan Lin

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Before You Start This Lab

Make sure that you have gone through and understood the steps involved in Lab 1. Let the TA know
if you are not signed up for this class on Piazza or if you do not have a class account (eecs151-xxx)
or an assigned port, so we can get that sorted out.

To fetch the skeleton files for this lab, cd to the git repository (fpga labs fa20) that you had
cloned in the first lab and execute the command git pull.

Take some time to go through the Verilog Primer Slides and review our lecture slides on Verilog. You
should understand some fundamental concepts of hardware design in Verilog, such as combinational
logic and sequential logic, in order to complete this lab.

This lab will walk you through how to create and manage an FPGA project in Vivado Design suite.
If you already have some experience with the tool, feel free to jump straight to the lab exercises.
Remember to checkoff when you finish the lab.

2 Our Development Platform - Xilinx PYNQ-Z1

Being a development board, the silkscreen print clearly identifies connectors of interest. You should
be able to recognize the most basic IO features on the board: GPIO LEDs, slide switches, and push-
buttons. You should also be familiar with other basic elements of the board: input power socket,
power switch, and the USB programming port. The following image identifies important parts of
the board that may not have been obvious:

1

http://inst.eecs.berkeley.edu/~eecs151/fa19/files/verilog/Verilog_Primer_Slides.pdf

1. Z-7020 System-on-Chip (SoC) of the Zynq-7000 SoC family. It comprises a hardened dual-
core ARM processor and the Xilinx FPGA Artix-7 xc7z020clg400-1. The SoC connects to
the peripheral ICs and I/O connectors via PCB traces.

2. ISSI 512MB off-chip DRAM.

3. Power source jumper: shorting ”REG” has the board use the external power adapter as a
power source; shorting ”USB” has it rely on the 5 V provided by USB. The latter will work
unless your design needs to power a lot of external peripherals. Since we have labs and power
adaptors available, we avoid this.

4. Programming mode jumper to select how we want to use the ARM processor. There are two
available modes: Operating-System mode (booting Linux from SD card) or Bare-metal mode.
Since we are not touching the ARM processor, we avoid this for now.

5. SD card slot for inserting an SD card to boot Linux. Since we are not touching the ARM
processor, we avoid this for now.

3 The FPGA - Xilinx Artix-7 xc7z020clg400-1

xc7z020clg400-1 is the part ID of our FPGA. How should we interpret it? xc7z020 is the part
number which should help us to identify the specific device from a Xilinx FPGA family. clg400 is
the package number which defines how many package IO pins. -1 is the speed grade.

Our FPGA is an Artix-7 Programmable Logic which is a low-end 7-series Xilinx FPGA family
(the mid-end and high-end are Kintex-7 and Virtex-7 families, respectively). To help you become
familiar with the FPGA that you will be working with through the semester, please skim Chapter
21: Programmable Logic Description of the Technical Reference Manual and Chapter 2 of the
Xilinx 7-series Configurable Logic Block User Guide. Pay particular attention to pages 15-25 on

2

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

Slices and pages 40-42 on Multiplexers. Please also read Zynq-7000 Product Selection guide. Pay
attention to slide 2. Can you identify our chip?

One of the key differentiators of FPGA devices is their logic capacities. You should be aware
of the device resource of your target FPGA when designing your digital circuit (it is unlike the
software world that the CPU or GPU should be able to compile and run whatever code throwing
at it regardless of the code size). Early FPGAs employ primitives such as LUTs or FFs (Flip-
flops) for logic implementation. Then, FPGA vendors started adding hardened blocks such as fast
carry adders, block memories (BRAM) and Digital Signal Processing (DSP) slices onto FPGAs to
augment their capability. The carry adder macros can implement fast arithmetic and comparison
operations, the BRAMs provide fast on-chip storage, and the DSP slices are able to compute
multipliers very efficiently, among many other operations. State-of-the-art FPGAs also incorporate
floating-point calculation capability in those hardened blocks, thus greatly enhance the performance
and expand their applicability. FPGA now has evolved to a competitive computing platform, and
there are many applications that map really well on to FPGA, such as networking, wireless, biology,
video/image processing, high-frequency trading, or deep learning. The Zynq-7000 product line
(which incorporates ARM processors next to a Programmable Logic – as in the chip we are using
right now) also provides great platforms for embedded or hobbyist applications.

You will need to answer the following questions in your lab report.

3.1 Understanding your FPGA

1. How many LUTs, FFs, Block RAMs (number of 36Kb blocks), and DSP slices are on the
xc7z020 FPGA?

2. How many SLICEs are in a single CLB? What does each SLICE contain?

3. What is the difference between a SLICEL and a SLICEM?

4. How many inputs do each of the LUTs have?

5. How do you implement logic functions of 7 inputs in a single SLICEL? How about 8? Draw
a high-level circuit diagram to show how the implementation would look. Be specific about
the elements (LUTs, muxes) that are used.

4 Overview of the FPGA Build Toolchain

Before we begin the lab, we should familiarize ourselves with the CAD (computer aided design)
tools that translate a circuit implemented in a Hardware Description Language (such as Verilog)
into a bitstream that configures the FPGA. These tools will pass your design through several
stages, starting with logic synthesis, followed by placement and routing. The final stage generates
a bitstream ready to download to your FPGA. In previous years, older evaluation platform (the
ML505) used older FPGAs (a Xilinx Virtex-5 LX110T) and an older software suite (Xilinx ISE).

Our boards use Xilinx’s updated design software, the Vivado Design Suite which supports modern
Xilinx FPGA devices, and features improved CAD algorithms to produce higher quality-of-result in
shorter time. Vivado also has integrated scripting capability (using the Tcl language – pronounced
”tickle”) which allows users to write Tcl commands to interact with Vivado in a command-line

3

https://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf

fashion. It is a great alternative to the GUI mode. A good way of learning the tool without relying
on the GUI is to be aware of different Tcl commands, and how to use them.

We provided an existing project in Lab 1 to test the infrastructure. Feel free to skip section 4.1 ∼ 4.6
if you are confident about it.

4.1 Set up your PYNQ-Z1

Please refer to the steps in lab 1.

4.2 Verilog source file

Throughout the semester, you will build increasingly complex designs using Verilog, a widely used
hardware description language (HDL).

Open up the lab2/src/z1top.v source file. This file contains a Verilog module description which
specifies input and output signals. It also describes the logic gate connecting the signals.

The BUTTONS input is a signal that is 4 bits wide (as indicated by the [3:0] width descriptor). This
input signal represents the logic signals coming from the momentary push-button switches on the
bottom right side of your PYNQ-Z1 board. You should inspect your board to find these switches
and confirm that there are 4 of them. Another basic input signal is SWITCHES, which is 2 bits wide
(as indicated by the [1:0] descriptor). Each of these two signals represents the slide switches on the
PYNQ-Z1, located just to the left of the momentary switches (look for SW0 and SW1).

The LEDS output is a signal that is 6 bits wide (as indicated by the [5:0] width descriptor). This
output signal represents the logic signals coming out of the FPGA and going into the bank of LEDs
at the bottom right of the PYNQ-Z1, just above the buttons. There are only 4 LEDs there; two
more are tri-color LEDs located just above the slide switches in the middle.

In this file, we can describe how the slide switches, push buttons and LEDs are connected through
the FPGA. There is one line of code that describes an AND gate that takes the values of one of
the buttons and one of the slide switches, ANDs them together, and sends that signal out to the
first LED. Let’s put this digital circuit on the FPGA!

Open up the constraint file in lab2/constraints/z1top.xdc. This file, which contains a bunch
of Tcl commands, specifies various constraints of your digital circuit, such as IO pin mapping.
Note how the signals in the Verilog correlate with the constraint commands in this file. As we will
see later, the constraint file also allows you to set the clock signal (where, and how fast) for your
sequential digital circuit.

Let’s see one example:

set_property -dict { PACKAGE_PIN L19 IOSTANDARD LVCMOS33 } [get_ports { BUTTONS[3] }];

This syntax assigns the properties PACKAGE_PIN and IOSTANDARD with the values L19 and LVCMOS33

(respectively) to the port BUTTONS[3], a signal we defined in our Verilog source. Each of these
properties has a separate consequence in the synthesis process:

• The pin to which the BUTTONS[3] signal should be connected to the physical pin L19 on the
FPGA package.

4

• The logic convention (maximum voltage, what ranges constitute low and high, etc) for that
port will be LVCMOS33.

Setting constraints is one of the most important steps in the FPGA development flow, especially if
your circuit interfaces with the external world (receiving signals or sending signals via IO circuitry
of the board). Please do not forget this step. You will not be able to generate a bitstream if you do
not set the pin mapping to all the input/output signals of your top-level Verilog module; Vivado
will complain and abort its execution. And your FPGA design will not work properly if your pin
assignment is wrong. A good practice is to check the documentation of your target FPGA device
carefully of which IO peripheral maps to which pin, and the appropriate logic standard unless you
can get the sample board constraint file from the vendor.

4.3 Creating Vivado Project

This section describes how to create a Vivado project using GUI mode. Project is a neat way
of managing your design and constraint files, exercise different design steps, or review the design
reports. In our CentOS environment, press Alt + F2 to bring up a command dialog. Type the full
path to the vivado binary to open Vivado GUI locally in your machine:

/opt/Xilinx/Vivado/2019.1/bin/vivado

You can also run this from a terminal or create a Desktop shortcut.

Create new project by select File → New → Project to launch the following wizard.

Type the project name and location. You can leave them as default. Click Next. In the next
window, make sure to select RTL project, and Do not specify sources at this time.

5

Next, we select the target FPGA device for the project. Click the Boards tab, find the PYNQ-Z1
entry and select it. Alternatively, you can select the part ID xc7z020clg400-1 from the Parts tab
as follows.

Once you are done, you should be able to see a window as follows.

6

Now we start adding our design and constraint files to the project. Press Alt + A to add files as
follows (or right click on the Sources pane and select Add Sources). Add your Verilog source file
/lab2/src/z1top.v

And repeat the step to add your constraint file /lab2/constraints/z1top.xdc

Our first Vivado project is good to go now! Note that you can also use Vivado code editor to write
Verilog code. This might be a good starting point if you first learn the language since the tool is
able to capture syntax errors or obvious bugs quickly, which could save you from a lot of potential
miseries down the road.

7

4.4 Synthesis

The Synthesis step performs logic synthesis which translates the input HDL code into a netlist of
FPGA primitives such as LUTs, FFs, BRAMs, or DSPs. Remember that there are no logic gates
at all in an FPGA! To run the synthesis step in the Vivado Design Suite, select Run Synthesis
in the Flow Navigator pane on the left-hand side of the window. If this has been run before, the
synthesized design can be inspected by selecting Open Synthesized Design. Select Schematic under
“Open Synthesized Design” on the left toolbar to see a circuit schematic.

If you wish to see the netlist in the form of Verilog, type the following Tcl command

write_verilog my_netlist.v

in the Tcl Console at the bottom pane. Check that the AND gate has now mapped to a 2-input
LUT.

4.5 Implementation

The Implementation step performs placement and routing the design. Placement places the prim-
itives in the netlist to the physical locations on the FPGA. Routing connects the placed blocks
together using switch blocks and wires on the FPGA. The next step is timing analysis which evalu-
ates if your design meets the target clock constraint (this only applies if your design has sequential
elements). Implementation is the most time-consuming task of a hardware design flow, especially
if you have a complex design. Select Run Implementation in the Flow Navigator to run it, then
select Open Implementation to inspect its outputs.

4.6 Generate Bitstream and Program FPGA

To generate the bitstream for our target FPGA, we invoke Generate Bitstream in the Flow Navi-
gator. This step will generate a *.bit file that can be written to the configurable memory cells of
the FPGA. The bitstream is compatible with the target device of your Vivado project.

When the bitstream generation is done, select Open Hardware Manager and connect to your FPGA.
If you haven’t before, or the hardware manager says no devices are connected, select Menu → Open
New Target. Follow the steps from Lab 1 to connect to the FPGA. You should see xilinx_tcf

listed under Harware Targets in the top pane, and in the bottom pane, two entries: arm_dap_0 and
xc7z020_1. Next → Finish.

8

Next, click Program device to load the bitstream to your connected FPGA. The ”Done” LED
(green, near the Zynq chip) should be on if you successfully configure the FPGA.

BTN0 and SW0 are the inputs of an ”and” gate. LED0 is the output and should be lighted up
when both inputs are high. Try to light up more LEDs and play with more buttons/switches!

4.7 Design Reports and Logs

Reports are automatically generated at each step in the build flow. You should be able to discover
them under each of the expanded stages in the Flow Navigator. The Project Summary window
(under the Window menu) presents a nice summary of the reports generated through each step.
The reports tell you the Quality of Result (QoR) of your design, such as how many LUTs, FFs,
BRAMs, DSPs are used, and whether your circuit meets the target clock constraint. You can
open the reports from your terminal using your favorite text editor. The following reports are
particularly important and you should pay attention to when evaluating, debugging, or optimizing

9

your design.

project_1/project_1.runs/synth_1/z1top_utilization_synth.rpt: Resource utilization re-
port after synthesis.

project_1/project_1.runs/impl_1/z1top_utilization_placed.rpt: Resource utilization re-
port after placement.

project_1/project_1.runs/impl_1/z1top_utilization_routed.rpt: Timing summary report
after routing.

You will often find the log files helpful when you want to look for more information of how your
Verilog code is compiled to a bitstream. Make sure you get what you want (if not, why) by putting
effort in understanding the messages as well as warnings or errors if any from the log files.

project_1/project_1.runs/synth_1/runme.log: Execution log of synthesis step

project_1/project_1.runs/impl_1/runme.log: Execution log of implementation step

5 Build Your First Combinational Digital Circuit

In this section, you will design a 3-bit adder using either structural or behavioral approach in
Verilog.

5.1 Build a Structural 3-bit Adder

What do we mean by ”structural approach”? It builds a circuit using only Boolean logic gates
and multiplexers. It’s similar to how you are drawing your design in a schematic editor, but using
Verilog instead. To help you with this task, please refer to the ‘Code Generation with for-generate
loops’ slide in the Verilog Primer Slides (slide 35).

1. Create a new project (or reuse the project in Lab 1). Add the following files to your project:
lab2/src/full_adder.v, lab2/src/structural_adder.v, lab2/src/z1top_adder.v. Also
add the constraint file to your project: lab2/constraints/z1top.xdc.

2. Open full_adder.v; fill in the logic to produce the full one-bit adder outputs from the inputs.

3. Open structural_adder.v and construct a ripple carry 3-bit adder using the full one-bit
adder cells you designed earlier. Use ‘for-generate loop’ construct to make your code compact.

4. Finally, inspect the z1top_adder.v top-level module and see how your structural adder is
instantiated and hooked up to the top-level signals. For now, just look at the user_adder

instance of your structural adder. Note how the adder operands and result are constructed
from the input/output signals of the top-level Verilog module, and in turn the buttons and
switches and LEDs on the FPGA.

10

5. Set z1top_adder.v as the top-level module by right-clicking z1top adder in Sources →
Design Sources and click ‘Set as Top’. You can skip this step if it is already the top-level
module.

6. Run bitstream generation as usual.

7. Program the FPGA and test out the design. Try different combinations of buttons and
switches. Make sure you get correct results from your adder via the LEDs.

5.2 Inspection of Structural Adder

5.2.1 Schematics and FPGA Layout

Take a look at how the Verilog you wrote mapped to the primitive components on the FPGA. Three
levels of schematic are generated for you once you’ve run the pipeline. In the Flow Navigator, you
can view Schematics under

1. RTL Analysis → Open Elaborated Design

2. Synthesis → Open Synthesized Design

3. Implementation → Open Implemented Design

The first two will give you a fairly straightforward hierarchical block-level view of your design. You
will find your circuit by drilling down into the user_adder module (that’s the name you gave the
instantiation of structural_adder in z1top_adder.v). Check to see that your structural adder
module is hooked up properly and looks sane. It’s ok if the wires don’t appear to be connected,
just hover your mouse over the endpoints on the schematic and ensure that the connections are as
you expect. Take note of the primitive blocks used in your circuit.

In the RTL Analysis (1) you are viewing a visualization of the topology your RTL describes. At
this point, logic elaboration is very abstract: you’ll notice that your logic is expressed in terms of
the logic gates you described (XOR, AND, etc). Any logic you describe in RTL is included, even if
it’s disconnected. In the Synthesis schematic (2) this logic has been elaborated further into what
look like FPGA elements, but still at higher layer of abstraction, and with some unused signals still
present. In the final schematic of the three, Implementation (3), the schematic now shows which of
the elements in your nominated chip are actually targeted. Superfluous logic has been elided from
the design.

Finally, you also look at how your circuit was placed and laid out on the FPGA. Once you’ve run
the pipeline, open Implemented Design, click on the Window menu, and select Device. You’ll be
presented with a layout of the FPGA package as in box 1 in the figure below. It’ll be hard to
see with a small design, but the logic elements you’ve ended up using with your design will be
highlighted. You can highlight your own nets in the diagram to make it easier to find them by
selecting a net or signal from the Netlist pane (Window → Netlist ; see box 2).

11

Explore your design and look for the modules that you wrote. If you scroll down in the Netlist Window

you should see various components of your logic. Some elements are mapped to LUTs: somewhere
buried in their properties is the type of slice. See if you can find out which nets have been assigned
to LUTs, and how they are connected. Go ahead and explore several SLICELs that implement the
structural adder to see how they are connected to each other and the outputs of your circuit.

5.3 Build a Behavioral 3-bit Adder

Check out behavioral_adder.v. It has already been filled with the appropriate logic for you.
Notice how behavioral Verilog allows you to describe the function of a circuit rather than the
topology or implementation. Modify your top-level module in z1top_adder.v to use the behavioral
adder instead of the structural adder. Generate and load the bitstream to the FPGA. Verify if the
behavioral adder works correctly.

Behavioral coding style allows designers to build their designs using arithmetic operators, compara-
tors, or software-like constructs such as if-else, switch-case (to generate muxes), which greatly
improves productivity.

5.4 Inspection of Behavioral Adder Schematics and FPGA Layout

Go through the same steps as you did for inspecting the structural adder. View the schematics at
successive levels of logic elaboration and how FPGA components are connected. Record and note
down any differences you see between both types of adders in the schematic and the FPGA layouts.

12

6 Lab Deliverables (due: 11:59PM, Sep 13th, 2020)

6.1 Lab Checkoff

To checkoff for this lab, have these things ready to show the TA:

1. Your programmed and functional board showing LED0 being controlled by BTN0 and SW0,
as well as any modifications you made to the design.

2. Demonstrate a working 3-bit structural adder on the FPGA.

6.2 Lab Report

Also please submit a short lab report to Gradescope in which you answer/show the following things:

1. Answers for the questions in section 3.1

2. What is the resource utilization (in terms of LUTs) of your 3-bit structural adder? What
about the 3-bit behavioral adder?

A Using Vivado in command-line mode (Tcl mode)

You can launch Vivado in command-line mode without opening the GUI as follows.

/opt/Xilinx/Vivado/current/bin/vivado -mode tcl

Then you can enter Tcl commands to interact with Vivado. Here is a minimal set of Tcl commands
from creating Vivado project until prgramming FPGA.

Create Vivado project "project_1" under the directory "my_project_dir"

with the target FPGA device "xc7z020clg400-1"

create_project project_1 my_project_dir -part xc7z020clg400-1

Set a specific board configuratio (PYNQ-Z1)

set_property board_part www.digilentinc.com:pynq-z1:part0:1.0 [current_project]

Add design and constraint files

add_files -norecurse src/z1top.v

add_files -fileset constrs_1 -norecurse constraints/z1top.xdc

Update project

update_compile_order -fileset sources_1

Set top-level module

set_property top z1top [current_fileset]

update_compile_order -fileset sources_1

Run Synthesis;

Check my_project_dir/project_1/synth_1/runme.log for Synthesis output

13

launch_runs synth_1

Run Implementation;

Check my_project_dir/project_1/impl_1/runme.log for Implementation output

launch_runs impl_1

Run the whole flow (including Synthesis and Implemention if not yet run)

until bitstream generation;

Check my_project_dir/project_1/impl_1/runme.log for Implementation output

launch_runs impl_1 -to_step write_bitstream

Establishing connection with local connected FPGA (only need to run once

if Vivado can connect the FPGA)

open_hw_manager

connect_hw_server -url localhost:<your port number> -allow_non_jtag

open_hw_target

Specify the bitstream for configuration

set_property PROGRAM.FILE {my_project/project_1.runs/impl_1/z1top.bit} \

[get_hw_devices xc7z020_1]

current_hw_device [get_hw_devices xc7z020_1]

refresh_hw_device -update_hw_probes false [lindex [get_hw_devices xc7z020_1] 0]

Load the bitstream to FPGA

program_hw_devices [get_hw_devices xc7z020_1]

refresh_hw_device [lindex [get_hw_devices xc7z020_1] 0]

As an optional exercise, you can try those scripts above to see if you can generate bitstream and
configure your FPGA. You can also put all the Tcl commands into one file and run it in batch
mode as follows.

/opt/Xilinx/Vivado/current/bin/vivado -mode batch -source my_script.tcl

This will invoke Vivado to run all the Tcl commands written in my_script.tcl.

You can learn more about different Tcl commands in Vivado from this extensive document Vivado
Tcl commands. You might also be interested to learn about Vivado non-project mode which
provides more flexilibity in what specific steps you want to run, or reports you want to generate.
Keep in mind that the Tcl commands for non-project mode are slightly different from project-mode.
Here is an additional resource to learn about the tool Vivado Design flows Overview Tutorial.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

14

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug888-vivado-design-flows-overview-tutorial.pdf

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

• Sp19: Christopher Yarp, Arya Reais-Parsi

• Fa19: Cem Yalcin, Rebekah Zhao, Ryan Kaveh, Vighnesh Iyer

• Sp20: Tan Nguyen

• Fa20: Charles Hong, Kareem Ahmad, Zhenghan Lin

15

	Before You Start This Lab
	Our Development Platform - Xilinx PYNQ-Z1
	The FPGA - Xilinx Artix-7 xc7z020clg400-1
	Understanding your FPGA

	Overview of the FPGA Build Toolchain
	Set up your PYNQ-Z1
	Verilog source file
	Creating Vivado Project
	Synthesis
	Implementation
	Generate Bitstream and Program FPGA
	Design Reports and Logs

	Build Your First Combinational Digital Circuit
	Build a Structural 3-bit Adder
	Inspection of Structural Adder
	Schematics and FPGA Layout

	Build a Behavioral 3-bit Adder
	Inspection of Behavioral Adder Schematics and FPGA Layout

	Lab Deliverables (due: 11:59PM, Sep 13th, 2020)
	Lab Checkoff
	Lab Report

	Using Vivado in command-line mode (Tcl mode)

