
EECS 151/251A FPGA Lab 3:

Tone Generator, Simulation, and Connecting Modules

Prof. Sophia Shao
TAs: Harrison Liew, Charles Hong, Jingyi Xu, Kareem Ahmad, Zhenghan Lin

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Before You Start This Lab

Run git pull in fpga_labs_fa20.

We suggest that you look through these two documents that will help you better understand some
Verilog constructs.

1. wire vs reg.pdf - The differences between wire and reg nets and when to use each of them.

2. always at blocks.pdf - Understanding the differences between the two types of always @ blocks
and what they synthesize to.

1.1 Configuring your assigned hw server port

In this lab we will move from using Vivado’s gui, to using a Makefile and tcl-script based flow. To
configure a terminal on the instructional machines to use your port by default, use:

export HW_SERVER_PORT=<YOUR PORT NUMBER>

You will need to do this for any terminal you want to run make program in without explicitly
passing in HW_SERVER_PORT=<YOUR PORT NUMBER>

2 Designing a Tone Generator

Let’s create a tone generator/buzzer on the FPGA.

2.1 Clock Sources

Look at the Pynq Reference Manual. Read Section 11 about the clock sources available on the
Pynq. We are using the 125 MHz clock from the Ethernet PHY IC on the Pynq board connected to
pin H16 of the FPGA chip.

Look at the src/z1top.v top-level module and its CLK_125MHZ_FPGA input.

1

http://inst.eecs.berkeley.edu/~eecs151/fa20/files/verilog/wire_vs_reg.pdf
http://inst.eecs.berkeley.edu/~eecs151/fa20/files/verilog/always_at_blocks.pdf
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual

module z1top (

input CLK_125MHZ_FPGA,

...

);

Next take a look at the constraints in src/PYNQ-Z1 C.xdc and notice how the LOC for the clock
net is set to H16, just as specified in the Pynq-Z1 Reference Manual.

set_property -dict { PACKAGE_PIN H16 IOSTANDARD LVCMOS33 } \

[get_ports { CLK_125MHZ_FPGA }];

This is how we map top-level signals in Verilog to the physical FPGA pins they are connected to.
We can access the clock signal from our Verilog top-level module and can propagate this clock signal
to any submodules that may need it.

2.2 Audio Out

Look at Section 14 of the Pynq Reference Manual which describes the mono audio out feature on
the Pynq board.

The FPGA pin R18 is connected to the AUD_PWM net. The FPGA can drive this net with a PWM
signal which goes through a low-pass filter and is driven into the audio jack on the Pynq board.

There’s also an AUD_SD net connected to FPGA pin T17, which turns off the opamps in the low-pass
filter. Setting AUD_SD to 1 enables the audio output.

Find these signals in the src/PYNQ-Z1 C.xdc file, and note how they appear in the src/z1top.v

port list.

2.3 Generating a Square Wave

Let’s play a 440 Hz square wave out of the Mono Audio Out port on the Pynq. The square wave
should have a 50% duty cycle, so for half of the period of one wave the signal should be high and for
the other half, the signal should be low. We have a 125 MHz clock we can use to time our circuit.

Find the following:

Question 1: Square Wave Calculations

a) The period of our clock signal (frequency = 125 MHz)?

b) The period of a 440 Hz square wave?

c) How many clock cycles fit in one period of the square wave?

Open src/tone_generator.v and design a circuit to output a 440Hz square wave on the square_wave_out
output. Ignore the tone_switch_period, output_enable, and volume inputs for now.

2

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual

3 Simulating the Tone Generator

Let’s run some simulations on the tone_generator in software to check it works before putting it
on the FPGA. To do this, we will need to use a Verilog testbench. A Verilog testbench is designed
to test a Verilog module by supplying it with the inputs it needs (stimulus signals) and testing
whether the outputs of the module match what we expect.

3.1 Overview of Testbench Skeleton

Check the provided testbench skeleton in sim/tone_generator_testbench.v. Let’s go through
what every line of this testbench does.

`timescale 1ns/1ns

The timescale declaration needs to be at the top of every testbench file.

`timescale (simulation step time)/(simulation resolution)

The first argument to the timescale declaration is the simulation step time. It defines the granularity
of discrete time units in which the simulation advances. In this case, we have defined the simulation
step time to be one nanosecond, so we can advance the simulation time by as little as 1ns at a time.

The second argument to the timescale declaration is the simulation resolution. In our example it is
also 1ns. The resolution allows the simulator to model transient behavior of your circuit in between
simulation time steps. For this lab, we aren’t modeling any gate delays, so the resolution can safely
equal the step time.

`define SECOND 1000000000

`define MS 1000000

// The SAMPLE_PERIOD corresponds to a 44.1 kHz sampling rate

`define SAMPLE_PERIOD 22675.7

These are some macros defined for our testbench. They are constant values you can use when
writing your testbench to simplify your code and make it obvious what certain numbers mean. For
example, SECOND is defined as the number of nanoseconds in one second. The SAMPLE_PERIOD is
the sampling period used to sample the square wave output of the tone_generator at a standard
44.1 kHz sample rate.

module tone_generator_testbench();

// Testbench code goes here

endmodule

tone_generator_testbench is a testbench module. It is not intended to be placed on an FPGA,
but rather it is to be run by a circuit simulator. All your testbench code goes in this module. We
will instantiate our DUT (device under test) in this module.

reg clock;

reg output_enable;

reg volume = 0;

reg [23:0] tone_to_play;

wire sq_wave;

3

Here are the inputs and outputs of our tone_generator. Notice that the inputs to the tone_generator
are declared as reg type nets and the outputs are declared as wire type nets. This is because we
will be driving the inputs in our testbench inside an initial block and we will be reading the
output. Note we can set the initial value of reg nets in the testbench to drive a particular value
into the DUT at time 0 (e.g. volume).

initial clock = 0;

always #(4) clock <= ~clock;

This is the clock generation code. The clock signal needs to be generated in our testbench so it can
be fed to the DUT. The initial statement sets the value of the clock net to 0 at the very start of the
simulation. The next line toggles the clock signal every 4ns, i.e. half period of 125 MHz clock.

tone_generator audio_controller (

.clk(clock),

.output_enable(output_enable),

.tone_switch_period(tone_to_play),

.volume(volume),

.square_wave_out(sq_wave)

);

Now we instantiate the DUT and connect its ports to the nets we have declared in our testbench.

initial begin

tone_to_play = 24'd0;

output_enable = 1'b0;

#(10 * `MS);

output_enable = 1'b1;

tone_to_play = 24'd37500;

#(200 * `MS);

...

$finish();

end

This is the body of our testbench. The initial begin ... end block is the ‘main()’ function for
our testbench, and where the simulation begins execution. In the initial block we drive the DUT
inputs using blocking (=) assignments.

We can also order the simulator to advance simulation time using delay statements. A delay
statement takes the form #(delay in time steps);. For instance the statement #(100); would
run the simulation for 100ns.

In this case, we set output_enable to 0 at the start of the simulation, let the simulation run
for 10ms, then set output_enable to 1. Then tone_to_play is changed several times, and the
tone_generator is given some time to produce the various tones.

The final statement is a system function: the $finish() function tells the simulator to halt the
simulation.

4

integer file;

initial begin

file = $fopen("output.txt", "w");

forever begin

$fwrite(file, "%h\n", sq_wave);

#(`SAMPLE_PERIOD);

end

end

This piece of code is written in a separate initial begin ... end block. The simulator treats
both initial blocks as separate threads that both start execution at the beginning of the simulation
and run in parallel.

This block of code uses two system functions $fopen() and $fwrite(), that allow us to write to a
file. The forever begin construct tells the simulator to run the chunk of code inside it continuously
until the simulation ends.

In the forever begin block, we sample the square_wave_out output of the tone_generator and
save it in output.txt. We sample this value every `SAMPLE_PERIOD nanoseconds which corresponds
to a 44.1 kHz sampling rate. The tone_generator’s output is stored as 1s and 0s in output.txt

that can be converted to an audio file to hear how your circuit will sound when deployed on the
FPGA.

3.2 Running the Simulation

There are 2 RTL simulators we can use:

• VCS - proprietary, only available on lab machines, fast

• Icarus Verilog - open source, runs on Windows/OSX/Linux, somewhat slower

They all take in Verilog RTL and a Verilog testbench module and output:

• A waveform file (.vpd, .vcd, .fst) that plots each signal in the testbench and DUT across time

• A text dump containing anything that was printed during the testbench execution

3.2.1 VCS

If you’re using the lab machines, you should use VCS:

make sim/tone_generator_testbench.vpd

This will generate a waveform file sim/tone_generator_testbench.vpd which you can view using
dve. Login to the lab machines physically or use X2go and run:

dve -vpd sim/tone_generator_testbench.vpd &

The DVE interface contains 3 panels (Figure 1).

From left to right, you can see the ‘Hierarchy’, ‘Signals’, and ‘Source Code’ windows. The ‘Hierarchy’
window lets you select a particular module instance in the testbench to view its signals. In the

5

Figure 1: DVE Interface

‘Signals’ window, you can select multiple signals (by Shift-clicking) and then right-click → ‘Add To
Waves’ → ‘New Wave View’ to plot the waveforms for the selected signals.

The waveform viewer is shown in Figure 2.

Figure 2: DVE Waveform Viewer

Here are a few useful shortcuts:

• Click on waveform: Sets cursor position

• O: Zoom out of waveform

• +: Zoom into waveform

• F: Fit entire waveform into viewer (zoom full)

• Left Click + Drag Left/Right: Zoom in on waveform section

6

3.2.2 Icarus Verilog

Icarus Verilog is also available on the lab machines. If you would like to install Icarus and gtkwave
locally, refer to the appendix.

Run make sim/tone_generator_testbench.fst to launch a simulation with Icarus and to produce
a FST waveform file. You can open the FST with gtkwave locally or on the lab machines.

3.3 Analyzing the Simulation

After opening the waveform, you should be able to see the clock oscillate at the frequency specified
in the testbench. You should also see the output_enable signal start at 0 and then become 1 after
10 ms. However, you may see that the sq_wave signal is just a red line. What’s going on?

3.3.1 Fixing Unknown Signals

Blue lines (written as ‘Z’ in Verilog) in a waveform viewer indicate high-impedance (unconnected)
signals. We won’t be using high-impedance signals in our designs, so blue lines or ‘Z’ indicate
something in our testbench or DUT isn’t wired up properly.

Red lines (written as ‘X’ in Verilog) in a waveform viewer indicate unknown signals. At the start of
simulation, all registers in your DUT contain unknown values (represented as ‘x’). Since we don’t
have an explicit reset signal for our circuit to bring the clock_counter to a defined value, it may
be unknown for the entire simulation.

Let’s fix this. In the future we will use a reset signal, but for now let’s use a simpler technique. In
src/tone_generator.v add an initial value to any registers in your design. (Note: Using initial
values works for simulations and FPGA implementations, but doesn’t work on ASICs. Reset signals
on the other hand are universal.)

// Original code:

reg counter;

// Change to:

reg counter = 0;

This tells the simulator that the initial value for this register should be 0. For this lab, when you
add new registers in your tone_generator or any other design module, you should instantiate them
with their initial value in the same way. Do not set an initial value for a ’wire’ type net; it
will cause issues with synthesis, and may cause X’s in simulation.

Now run the simulation again.

3.3.2 Helpful Tip: Reloading Waveforms

When you re-run your simulation and you want to plot the newly generated signals in DVE or
gtkwave, you don’t need to close and reopen the waveform viewer. Use Shift + Ctrl + R in
gtkwave or File → Reload Databases in DVE to reload the waveform file.

7

3.3.3 Listen to Your Square Wave Output

Look at the file written by the testbench at lab3/sim/output.txt. It contains a sequence of 1s
and 0s that represent the output of your tone_generator sampled at 44.1 kHz. We have provided
a Python script that can take this file and generate a .wav file that you can listen to.

Go to the lab3/ directory and run the command:

python3 scripts/audio_from_sim.py sim/output.txt

This will generate a file called output.wav. Run this command to play it:

play output.wav

If play doesn’t work, try running aplay output.wav. You should hear a 440Hz square wave.
Compare it with a reference tone generator. You can slow down the playback by 50% with
play output.wav tempo 0.5, but it may cause minor glitches in the playback.
If you cannot hear any audio, make sure x2go has audio support enabled. Open the session
preferences (blue menu icon in bottom right corner of the session bubble ¿ session preferences).
Under the media tab, make sure Sound Support is checked.

4 Top-Level Wiring and Tone Generator on the FPGA

Open src/z1top.v and instantiate the tone_generator. Connect square_wave_out to aud_pwm.
Drive the unused inputs of the tone_generator to 0. Set aud_sd to 1 to enable the audio output.

4.1 Make-Based FPGA Flow

We’re no longer using the Vivado GUI to run the FPGA flow, but a Makefile driven flow instead.
Inside lab3 you can run the following:

8

https://www.szynalski.com/tone-generator/

• make lint - Lint your Verilog with Verilator; checks for common Verilog typos, mistakes, and
syntax errors

• make synth - Synthesize z1top and put logs and outputs in build/synth

• make impl - Implement (place and route) the design, generate the bitstream, and put logs
and outputs in build/impl

• make program HW_SERVER_PORT=<PORT NUMBER> - Program the FPGA with the bitstream in
build/impl

• make program-force HW_SERVER_PORT=<PORT NUMBER> - Program the FPGA with the bit-
stream in build/impl without re-running synthesis and implementation if the source Verilog
has changed

• make vivado - Launch the Vivado GUI

Note: make program and make program-force commands connect to the hardware server on port
3121, unless you explicitly specify the port with HW_SERVER_PORT=<YOUR PORT NUMBER>. You can
spare yourself the extra typing by setting the port as an environment variable:
export HW_SERVER_PORT=<YOUR PORT NUMBER>

Then you can use make program without extra arguments.

You should start with make synth, and check the log in build/synth/synth.log for any warnings
or errors. Then build a bitstream by running make impl. Program the FPGA by running make

program.

Warning: the audio output will be loud, don’t put your headphones near your ear. Plug in
headphones and make sure you hear a buzzing noise at 440Hz. Again, compare the tone to a
reference tone generator. To stop the buzzing, you can press the SRST button on the top-right of
the Pynq.

5 Enhancements

5.1 Switching the Wave On and Off

Now you have a tone, but it can’t be toggled on and off without pulling the power to the FPGA
board or resetting it. Let’s use the output_enable input of the tone_generator module to gate
the square wave output. When output_enable is 0, you should pass 0 to the square_wave_out

output, but when output_enable is 1, you should pass your square wave to square_wave_out.

Wire up the output_enable signal to the first slide switch (SWITCHES[0]) in z1top.

Run the design flow and program the board. You should now hear a buzzing noise at 440Hz that
can be turned on or off by toggling the first slide switch.

5.2 System-Level Testbench

We previously tested the tone_generator on its own as a unit-test. We can also test the top-level
module z1top which contains the tone_generator. An example testbench is in sim/z1top_testbench.v.

9

https://www.szynalski.com/tone-generator/

Run the system-level testbench with: make sim/z1top_testbench.vpd.

Play around with the testbench by altering the clock frequency, changing when you turn on
output_enable and verifying that you get the audio you expect.

Question 2: Testbench Observations

a) If you increase the clock frequency from 125 Mhz, would you expect the tones generated by your
tone_generator to be of a higher or lower frequency than was generated with the 125 MHz clock?
Why?

b) Prove that the output_enable input of your tone_generator actually works in system-level
simulation. Take a screenshot.

5.3 Volume Adjustment

The tone from the FPGA is too loud! To fix this, when the square wave is high, do not emit a
continuous 1 on the square_wave_out port, but instead emit a PWM waveform with a duty cycle
selected by the volume input.

• volume = 1 → duty cycle = 50% when square wave is high

• volume = 0 → duty cycle = 25% when square wave is high

An example of the PWM technique is shown in Figure 3.

Square wave
with 50% duty

cycle

Square wave
where ‘high’

period has 50%
duty cycle

Low pass
�ltered square

wave

(a)

(b)

(c)

Figure 3: Example of using PWM to drive a 50% duty cycle wave when the square wave is high

You can refer to section 14.1 of the Pynq Reference Manual for help on PWM waveforms.

10

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual

Question 3: Verify Volume Adjustment

a) Modify the system-level testbench to iterate through both volume settings. What changes were
made?

b) Take a screenshot of the waveform showing how square_wave_out is PWMed for each volume

setting.

Wire up the volume signal to the second slide switch (SWITCHES[1]) in z1top. Create a bitstream
and test the volume configuration on the FPGA.

5.4 Configurable Frequency tone generator

Let’s extend our tone_generator so that it can play different notes. There is a 24-bit input to the
tone_generator called tone_switch_period.

The tone_switch_period describes how many cycles of the clk should pass before the square wave
output is toggled. For example a tone_switch_period of 150000 tells us to toggle the square wave
output every 150000 clock cycles, which for a 125 Mhz clock translates to a ∼ 417 Hz square wave.
Here is the derivation:

f =
1 period

2 · 150000 cycles
· 125× 106 cycles

1second

f ≈ 417 Hz

Note we multiply the tone_switch_period by 2 to get the actual period of the square wave.

You should toggle the square wave output every tone_switch_period cycles. Remember to initialize
any new registers declared in your tone_generator to their desired initial value to prevent unknowns
during simulation. You should also handle the case when tone_switch_period is 0. In this case
disable the tone output.

Open src/tone_generator.v and implement the functionality above. Extend the tone_generator_testbench
to play different tones and verify the tone generator works as expected.

Question 4: Verify Configurable Frequency

a) Create a testbench that plays some simple melody that you define. Save the audio file for checkoff.

b) Verify that when tone_switch_period is set to 0, the square_wave_out output doesn’t toggle.
Attach a screenshot.

5.4.1 Try the Configurable Frequency tone generator on the FPGA

Modify z1top.v to wire tone_switch_period to BUTTONS[3:0] input to the tone_generator.
You should tie the tone_switch_period to BUTTONS[3:0], left-shifted by 16 bits (effectively a
multiplication by 65536). This will allow you to control the tone_switch_period from 65536 to
983040. Leave SWITCHES[0] to control output_enable and SWITCHES[1] to control volume.

11

tone_generator audio_controller (

.output_enable(SWITCHES[0]),

.volume(SWITCHES[1]),

.tone_switch_period(BUTTONS[3:0] << 16),

// ...

);

Run the usual flow to put your new tone_generator on the FPGA. Verify that pushing the buttons
changes the frequency of your tone_generator.

6 Deliverables (due: 11:59PM, Sep 20th, 2020)

6.1 Lab Checkoff

In any lab session, show the TA the following:

1. Show the RTL you used to create your tone generator

2. Play an audio file that demonstrates playing a melody using the tone generator

3. Demonstrate your tone generator on the FPGA

(a) Demonstrate muting the output with a switch

(b) Demonstrate the volume control

(c) Demonstrate the runtime frequency configurability with the buttons

6.2 Lab Report

Submit a lab report with answers and screenshots for the questions in this lab to Gradescope.

A Local Dev Setup

If you are working entirely from your own machine (be it in a vm, or directly on the host), this lab
has 3 new dependencies (in addition to Vivado): make, iverilog, and gtkwave. Here we’ll cover
installing them for each OS.

A.1 Linux/OSX

1. Add vivado to your $PATH by adding this in your .bashrc:

export PATH="/opt/Xilinx/Vivado/2019.1/bin:$PATH"

2. Install Icarus Verilog

• Linux: sudo apt install iverilog

• OSX: brew install icarus-verilog

3. Install gtkwave

12

• Linux: sudo apt install gtkwave

• OSX: Download the app

In a terminal you should be able to successfully run vivado, iverilog, gtkwave.

A.2 Windows

Windows packages for Icarus are available. You should be able to download the appropriate .exe for
your machine. Gtkwave can be installed along with Icarus (just make sure you check the box for it).
Lastly, here is a link to install Cygwin. When you install Cygwin, you need to check the boxes for
make and git as shown in Fig. 4, and also Python 3.6.

Figure 4: Check make and git with your cygwin install!

After installing Icarus, gtkwave, and cygwin, you’ll need add Vivado, Icarus, and gtkwave to your
Windows PATH with the below steps.

• Go the windows control panel and find the ”Edit the system variables menu”. Alternatively,
if you just search for ”system variables”, the menu should pop up.

• Click the ”Environment Variables” button near the window’s bottom right corner (Fig. 5).

• Double click the ”Path” variable in the user variables dialog (Fig. 6).

• Click the next empty row and paste the path of the appropriate program (Fig. 7). Hit okay
and you’re done!

13

https://sourceforge.net/projects/gtkwave/files/gtkwave-3.3.100-osx-app/gtkwave.zip/download
http://bleyer.org/icarus/
https://www.cygwin.com/install.html

Figure 5: The System variables dialogue. Figure 6: Environment variables dialogue.

Figure 7: Adding programs to your PATH.

14

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

• Fa19: Vighnesh Iyer, Rebekah Zhao, Ryan Kaveh

• Fa20: Charles Hong, Kareem Ahmad, Zhenghan Lin

15

	Before You Start This Lab
	Configuring your assigned hw_server port

	Designing a Tone Generator
	Clock Sources
	Audio Out
	Generating a Square Wave

	Simulating the Tone Generator
	Overview of Testbench Skeleton
	Running the Simulation
	VCS
	Icarus Verilog

	Analyzing the Simulation
	Fixing Unknown Signals
	Helpful Tip: Reloading Waveforms
	Listen to Your Square Wave Output

	Top-Level Wiring and Tone Generator on the FPGA
	Make-Based FPGA Flow

	Enhancements
	Switching the Wave On and Off
	System-Level Testbench
	Volume Adjustment
	Configurable Frequency tone_generator
	Try the Configurable Frequency tone_generator on the FPGA

	Deliverables (due: 11:59PM, Sep 20th, 2020)
	Lab Checkoff
	Lab Report

	Local Dev Setup
	Linux/OSX
	Windows

