
EECS 151/251A FPGA Lab 4:
ROMs and IO Circuits

Prof. Sophia Shao
TAs: Harrison Liew, Charles Hong, Jingyi Xu, Kareem Ahmad, Zhenghan Lin

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Before You Start This Lab

Run git pull in fpga labs fa20.

Review a document that will help you better understand some concepts we will be covering.

1. Debouncer Circuit

Read the “What is Switch Bounce” section about why we need a debouncer circuit. Read
the “Digital Switch Debouncing” section about the implementation of a debouncer circuit.

2 Lab Overview

In this lab, we will

• use a ROM to store a melody and play it on the FPGA at different tempos using the
tone_generator

• build input conditioning circuits that make control signals from physical input devices, like
the buttons and switches we’ve been using up to now, more reliable

• verify the conditioning circuits are working correctly using the FPGA LEDs

• use synchronous resets to reset our circuits to a known initial state

3 Using an Asynchronous ROM to Build the Music Streamer

An asynchronous memory is a memory block that isn’t governed by a clock. In this lab, we will
use a Python script to generate a Verilog ROM block.

A ROM is a read-only memory. The ROM’s data can be accessed by supplying an address; after
some time, the ROM will output the data stored at that address. The number of addresses in a
memory is called its depth, while the number of bits stored per address is called the width of the
memory.

The synthesizer takes the Verilog you write and converts it into a low-level netlist which uses only
the primitives available on the FPGA. Our Verilog describes the functionality of some digital
circuit and the synthesizer infers what primitives implement the functional description. In this
section, we will examine the Verilog that allows the synthesizer to infer a ROM. This is a minimal
example of a ROM in Verilog: (depth of 8 entries/addresses, width of 12 bits)

http://www.labbookpages.co.uk/electronics/debounce.html

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 2

module rom (input [2:0] address, output reg [11:0] data);

always @(*) begin

case(address)

3'd0: data = 12'h000;

3'd1: data = 12'hFFF;

3'd2: data = 12'hACD;

3'd3: data = 12'h122;

3'd4: data = 12'h347;

3'd5: data = 12'h93A;

3'd6: data = 12'h0AF;

3'd7: data = 12'hC2B;

endcase

end

endmodule

To power our tone_generator, we will be using a ROM that is X entries/addresses deep and 24
bits wide. The ROM will contain notes that the tone_generator will play. You can choose the
depth of your ROM based on how long the music is.

We’ve provided you with a few scripts that can generate a ROM from either a file with it’s contents
or even from sheet music. Run these commands from lab4/.

python3 scripts/musicxml_parser.py musicxml/Twinkle_Twinkle_Little_Star.mxl music.txt

python3 scripts/rom_generator.py music.txt src/rom.v 1024 24

The first script will parse a MusicXML file and turn it into a list of tone_switch_periods for each
of the notes for a piece of sheet music. The second script will take that list and turn it into a ROM
that’s 1024 entries deep with a width of 24 bits.

Look at music.txt and src/rom.v. The last_address port of the ROM outputs the last address
that contains a valid note.

You can download your own music in MusicXML format from here (https://musescore.org/)
and run it through the same parser; it should ideally only have one part to work properly. You can
also directly edit the music.txt file to customize the contents of the ROM as you wish.

4 Designing the music streamer

Open up the music_streamer.v file. You should instantiate the ROM you created earlier and add
logic to address the ROM sequentially. The music_streamer will play each note in the ROM for
a predefined amount of time by sending it to the tone_generator via the tone output port. You
should play each note for 1/25th of a second.

In this section, only concern yourself with the clk input and the tone output; leave the other
inputs unused.

Next we’ll cover some testbench constructs and test the music_streamer.

https://musescore.org/

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 3

5 Testbench Techniques

There are several testbenches included in this lab for your synchronizer, edge detector, shift register,
debouncer, and music streamer that make use of some useful Verilog testbench constructs.

• @(posedge <signal>) and @(negedge <signal>) - These are a different type of delay state-
ment from what you have seen before in lab. #10 would advance the simulation by 10
timesteps. These commands will advance the simulation until the <signal> rises or falls.

For example:

@(posedge signal);

@(posedge signal);

Simulation time will advance until we have seen two rising edges of signal.

• repeat - it acts like a for loop but without an increment variable

For example:

repeat (2) @(negedge clk);

repeat (10) begin

@(posedge clk);

end

The simulation will advance until we have seen 2 falling clock edges and will then advance
further until we have seen 10 rising clock edges.

• $display - acts as a print statement. Similar to languages like C, if you want to print out a
wire, reg, integer, etc... value in your testbench, you will need to format the string. It works
like printf() in C.

For example:

$display("Wire x in decimal is %d", x);

$display("Wire x in binary is %b", x);

• tasks - tasks are subroutines where you can group and organize some commands rather than
haphazardly putting them everywhere. They can take inputs and assign outputs.

task wait_for_n_clocks();

input [7:0] num_edges;

begin

repeat (num_edges) @(posedge clk);

end

endtask

• fork/join - Allows you to execute testbench code in parallel. You create a fork block with
the keyword fork and end the block with the keyword join.

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 4

For example:

fork

begin

task1();

end

begin

$display("Another thread");

task2();

end

join

Multiple threads of execution are created by putting multiple begin/end blocks in the fork-
join block. In this example, thread 1 runs task1(), while thread 2 first $displays some text
then runs task2(). The threads operate in parallel.

• Hierarchical Paths - you can access signals inside an instantiated module for debugging pur-
poses. This can be helpful in some cases where you want to look at an internal signal but
don’t want to create another output port just for debug.

For example:

tone_generator tone_gen ();

$display("Signal inside my tone_generator instance, counter: %b",

tone_gen.counter);↪→

6 Simulating the music streamer

To simulate your music_streamer open up lab4/src/music_streamer_testbench.v. Note how
the tone_generator is wired to the music_streamer. This test just runs the music_streamer for
a second.

Run the test with make sim/music_streamer_testbench.vpd for VCS or make sim/music_streamer_
testbench.fst for Icarus Verilog.

Inspect the waveform and verify that there are no undefined signals (red lines/X). Run the Python
script python3 scripts/audio_from_sim.py sim/output.txt to generate a .wav file and listen
to the music_streamer. It should sound like the first second of the song that was loaded on the
ROM.

6.1 Verify your Code Works For Rest Notes

In simulation, you can often catch bugs that would be difficult or impossible to catch by running
your circuit on the FPGA. You should verify that if your ROM contains an entry that is zero (i.e.
generate a 0Hz wave), that the tone_generator holds the square_wave_out output at either 1 or
0 with no oscillation.

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 5

Figure 1: The ‘ball on a hill’ metaphor for metastability. If a register’s timing constraints are
violated, its output voltage oscillates and after some time unpredictably settles to a stable state.

Question 1: Music Streamer Simulation

a) Save a waveform screenshot demonstrating that a tone_switch_period of 0 sent by the ROM
results in no oscillation of the square_wave_out output for checkoff.

b) Save an audio file from the music_streamer simulation for checkoff.

6.2 FPGA Time

Instantiate the music_streamer and tone_generator in src/z1top.v similar to the music_streamer_
testbench. Connect SWITCHES[0] to the tone_generator’s output_enable and wire the volume

input to 0. Run make impl and make program HW_SERVER_PORT=<PORT NUMBER> and hear the
music played from the FPGA.

7 Input Conditioning Circuits

We want to use the buttons on the Pynq board to control the playback of the music by adjusting
the tempo, or pausing the music and playing it in reverse. To safely use the button signals, we
have to design input conditioning circuits to handle metastability and button bounce.

7.1 Synchronizer

In Verilog (RTL), digital signals are either 0’s or 1’s. In a digital circuit, a 0 or 1 corresponds to a
low or high voltage. If the circuit is well designed and timed (fully synchronous), we only have to
worry about the low and high voltage states.

The signals coming from the push buttons and slide switches on the Pynq board don’t have an
associated clock (asynchronous). When the button signals are put through a register, its hold or
setup time may be violated. This may put that register into a metastable state (Figure 1).

In a fully synchronous circuit, the timing tools will determine the fastest clock frequency under
which the setup time constraints are all respected and the routing tools will ensure that any hold
time constraints are handled. An asynchronous signal could violate those constraints, and cause a
‘mid-rail’ voltage from a register to propagate to other logic elements. This can cause catastrophic
timing violations that the tools never saw coming.

We will implement a synchronizer circuit that will safely bring an asynchronous signal into a syn-
chronous circuit. The synchronizer needs to have a very small probability of allowing metastability
to propagate into our synchronous circuit.

This synchronizer circuit for this lab is relatively simple (Figure 2). For synchronizing one bit, it
is a pair of flip-flops connected serially.

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 6

Figure 2: 1-bit 2 Flip-Flop Synchronizer

Edit src/synchronizer.v to implement the two flip-flop synchronizer. This module is parameter-
ized by a width parameter which controls the number of one-bit signals to synchronize.

7.1.1 Synchronizer Simulation

A test is provided in sim/sync_testbench.v. Run it as usual makesim/sync_testbench.vpd. For
details on the constructs/techniques/syntax used in this testbench, refer to Section 5.

7.2 Debouncer

Recall this graphic from the prelab debouncer reading.

The debouncer circuit takes a button’s glitchy digital signal and outputs a clean signal indicating
a single button press. The reason we need a circuit for this can be seen in the figure below.

When we press or depress a button, the signal doesn’t behave like a perfect step function. Instead
the button signal is glitchy due to mechanical “bounce”. If we naively used the button signal
directly there would be many spurious “button presses”.

Look at src/debouncer.v. This is a parameterized debouncer which can debounce width signals
at a time. The other parameters reference the constants used in the circuit from the prelab reading.

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 7

The debouncer consists of:

1. Sample Pulse Generator - Tells our saturating counter when to sample the input signal.
It should output a 1, every sample_count_max clock cycles. By default sample_count_max

is set to 25000.

2. Saturating Counter - This is a counter that counts up to pulse_count_max. If the sample
pulse is high at a clock edge, increment the counter if the input signal is also high, else reset
the counter to 0. Once the saturating counter reaches pulse_count_max, it should hold that
value indefinitely until the sampled input signal becomes 0. The debounced_signal of your
debouncer should be an equality check between the saturating counter and pulse_count_max.

You can use the same sample pulse generator for all input signals into your debouncer, but you
should have a separate saturating counter per input signal. You will likely need to use a 2D reg in
Verilog to create the saturating counters. You may need to use generate-for.

Here is an example of creating a 2D array:

reg [7:0] arr [3:0]; // 4 X 8 bit array

arr[0]; // First byte from arr (8 bits)

arr[1][2]; // Third bit of 2nd byte from arr (1 bit)

And here is an example of using a generate-for loop:

genvar i;

generate

for (i = 0; i < width; i = i + 1) begin:LOOP_NAME

always @ (posedge clk) begin

// Insert synchronous Verilog here

end

end

endgenerate

Implement the debouncer.

7.2.1 Debouncer Simulation

A testbench has been provided in sim/debouncer_testbench.v. Make sure you understand what
the testbench is doing. Run it as usual.

The debouncer testbench has 2 tests:

1. Verifies that if a glitchy signal initially bounces and then stays high for less than the saturation
time, that the debouncer output never goes high.

2. Verifies that if a glitchy signal initially bounces and then stays high for more than the
saturation time, that the debouncer goes high and stays high until the glitchy signal goes
low.

If you are seeing issues where certain registers are red lines (X’s), make sure you give them an
initial state. For a 2D reg initialization, use the following initialization code in debouncer.v:

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 8

integer k;

initial begin

for (k = 0; k < width; k = k + 1) begin

saturating_counter[k] = 0;

end

end

7.3 Edge Detector

The debouncer will act to smooth-out the button press signal. It is then followed up with an edge
detector that can take the low-to-high transition of the debouncer output and use it to generate a
1 clock cycle wide pulse that the rest of our digital design can use.

Create a variable-width edge detector in src/edge_detector.v.

7.3.1 Edge Detector Simulation

A testbench is provided in edge_detector_testbench.v. Run as usual.

The edge detector testbench tests 2 scenarios, when the signal_in is a pulse 10 clock cycles wide
and a pulse 1 clock cycle wide and verifies that the edge_detect_pulse output goes high twice,
both times with a width of 1 clock cycle.

7.4 Input Conditioning Circuits on the FPGA

Look at src/button_parser.v which combines the synchronizer, debouncer, and edge detector in a
chain. A test of the button_parser is in src/z1top.v which contains a 4-bit count register which
is incremented/decremented by pressing buttons. The LEDs show the current value of count.

Run make lint and make program and try the circuit on the FPGA. Make sure to check synthesis
warnings in build/synth/synth.log. Fix any that are unexpected. Check that each button
performs the right action on the FPGA.

8 Synchronous Resets In Design and Simulation

Now that we have a debouncer that can give us a pulse for a press of a button, we have a way of
explicitly resetting our circuits! You will recall that in the previous lab, we set the initial value of
registers as below so that our simulation would have defined signals.

reg [23:0] counter = 0;

or

initial counter = 0;

Tying one of the push buttons to a reset signal, we can now do this instead.

always @ (posedge clk) begin

if (rst) begin

counter <= 24'd0;

end

else begin

counter <= counter + 24'd1;

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 9

end

end

Unlike what we did before, this Verilog is synthesizable for all deployment targets, FPGAs, ASICs,
and CPLDs. Modify the tone_generator and music_streamer to use the provided rst signal
instead of initial assignemnts.

Try rerunning the music_streamer_testbench, which pulses the rst signal, and verify using the
waveform that there are no Xs.

Finally connect buttons_pressed[0] to the music_streamer and tone_generator rst input in
z1top.v. Program the FPGA and verify the reset functionality.

9 Music Streamer Tempo Control

Let’s use the new user inputs we now have access to. The music_streamer plays each tone in the
ROM for 1/25th of a second.

Use the tempo_up and tempo_down inputs to the music_streamer to decrease and increase respec-
tively the time each tone in the ROM is played.

You can implement this by using a register to hold the number of clock cycles per note. Instead of
this number being hardcoded in Verilog to represent 1

25th of a second, you can change it at runtime.
You can add or subtract a fixed number from this register, which should alter the time each tone
is played. You get to choose this number.

Next in z1top.v, delete the button_parser test circuit and connect the music_streamer as such:

• tempo_up = SWITCHES[1] & buttons_pressed[1]

• tempo_down = !SWITCHES[1] & buttons_pressed[1]

Try it out on the FPGA and verify that you have control of your music_streamer’s tempo using
the buttons.

10 Checkoff

1. Show the RTL for the input conditioning circuits and music streamer

2. Show a waveform demonstrating no oscillation if the tone_switch_period is 0

3. Play an audio file generated from a simulation

4. Demonstrate the music streamer on the FPGA (tempo control, reset)

5. Explain how the debouncer_testbench, edge_detector_testbench, and sync_testbench

work. Why do we use fork-join?

10.1 Lab Report

No lab report for this lab!

EECS 151/251A FPGA Lab 4: ROMs and IO Circuits 10

Acknowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

• Fa19: Vighnesh Iyer, Rebekah Zhao, Ryan Kaveh

• Sp20: Tan Nguyen

	Before You Start This Lab
	Lab Overview
	Using an Asynchronous ROM to Build the Music Streamer
	Designing the music_streamer
	Testbench Techniques
	Simulating the music_streamer
	Verify your Code Works For Rest Notes
	FPGA Time

	Input Conditioning Circuits
	Synchronizer
	Synchronizer Simulation

	Debouncer
	Debouncer Simulation

	Edge Detector
	Edge Detector Simulation

	Input Conditioning Circuits on the FPGA

	Synchronous Resets In Design and Simulation
	Music Streamer Tempo Control
	Checkoff
	Lab Report

