
EECS 151/251A FPGA Lab 6:
FIFOs, UART Piano

Prof. Sophia Shao
TAs: Harrison Liew, Charles Hong, Jingyi Xu, Kareem Ahmad, Zhenghan Lin

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Before you start this lab

Run git pull in fpga labs fa20. Copy the modules you created in the previous lab to this lab:

cd fpga_labs_fa20

cp lab5/src/synchronizer.v lab6/src/.

cp lab5/src/debouncer.v lab6/src/.

cp lab5/src/edge_detector.v lab6/src/.

cp lab5/src/tone_generator.v lab6/src/.

cp lab5/src/uart_transmitter.v lab6/src/.

Review the concept of ready/valid handshake-based interface. Make sure the uart you designed in
lab5 works correctly.

2 Overview

In this lab, you will integrate the UART created in Lab 5 and the tone generator from the
previous labs to create a “piano”. In the first part, you will build a synchronous FIFO and verify
its functionality using a block-level testbench. Then you will use the FIFOs to bridge the UART
with an FSM that plays notes with a fixed duration send from your computer. There’s also a
bonus in this lab. You will extend the FSM to support playing variable length notes to earn extra
credit.

Here is an overview of the entire system in z1top we are going to build. You may find it useful to
refer to this block diagram while doing this lab.

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 2

button_parser.v

synchronizer

debouncer

edge_detector

uart.v

FPGA_SERIAL_TX

data_in
data_in_valid
data_in_ready

uart_transmitter

FPGA_SERIAL_RX
uart_receiver

din

wr_en

full

logic
data_out
data_out_valid
data_out_ready

fifo.v

wr_ptr

rd_ptr
RAM

BUTTONS

tone_switch_period
Piano

aud_pwm
Tone Generator

fifo.v

rst, note_length_control

3 Buliding a Synchronous FIFO

A FIFO (first in, first out) data buffer is a circuit that allows data elements to be queued through
a write interface, and read out sequentially by a read interface. The FIFO we will build in this
section will have both the read and write interfaces clocked by the same clock; this circuit is known
as a synchronous FIFO.

3.1 FIFO Functionality

A FIFO is implemented with a circular buffer (2D reg) and two pointers: a read pointer and a
write pointer. These pointers address the buffer inside the FIFO, and they indicate where the next
read or write operation should be performed. When the FIFO is reset, these pointers are set to the
same value.

When a write to the FIFO is performed, the write pointer increments and the data provided to
the FIFO is written to the buffer. When a read from the FIFO is performed, the read pointer
increments, and the data present at the read pointer’s location is sent out of the FIFO.

A comparison between the values of the read and write pointers indicate whether the FIFO is full
or empty. You can choose to implement this logic as you please. The Electronics section of the
FIFO Wikipedia article will likely aid you in creating your FIFO.

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 3

Here is a block diagram of the FIFO you should create from page 103 of the Xilinx FIFO IP
Manual.

The interface of our FIFO will contain a subset of the signals enumerated in the diagram above.

3.2 FIFO Interface

Look at the FIFO skeleton in src/fifo.v.

The FIFO is parameterized by:

• data_width - The number of bits per entry in the FIFO

• fifo_depth - The number of entries in the FIFO.

• addr_width - Calculated as the width of the read and write pointers.

The common FIFO signals are:

• clk - Clock used for both read and write interfaces of the FIFO.

• rst - Reset (synchronous with clk); should force the FIFO to become empty.

The FIFO write interface consists of:

• input wr_en - When this signal is high, on the rising edge of the clock, the data on din

should be written to the FIFO.

• input [data_width-1:0] din - The data to be written to the FIFO.

• output full - When this signal is high, the FIFO is full.

The FIFO read interface consists of:

• input rd_en - When this signal is high, on the rising edge of the clock, the FIFO should
output the data indexed by the read pointer on dout

• output [data_width-1:0] dout - The data that was read from the FIFO after the rising

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 4

edge on which rd_en was asserted

• output empty - When this signal is high, the FIFO is empty.

3.3 FIFO Timing

The FIFO that you design should conform to the specs above. To further, clarify here are the read
and write timing diagrams from the Xilinx FIFO IP Manual. These diagrams can be found on
pages 105 and 107. Your FIFO should behave similarly.

Your FIFO doesn’t need to support the ALMOST_FULL, WR_ACK, or OVERFLOW signals on the write
interface and it doesn’t need to support the VALID, UNDERFLOW, or ALMOST_EMPTY signals on the
read interface.

3.4 FIFO Testing

We have provided a testbench in sim/fifo_testbench.v.

The testbench performs the following test sequence:

1. Checks initial conditions after reset (FIFO not full and is empty)

2. Generates random data which will be used for testing

3. Pushes the data into the FIFO, and checks at every step that the FIFO is no longer empty

4. When the last piece of data has been pushed into the FIFO, it checks that the FIFO is not
empty and is full

5. Verifies that cycling the clock and trying to overflow the FIFO doesn’t cause any corruption
of data or corruption of the full and empty flags

6. Reads the data from the FIFO, and checks at every step that the FIFO is no longer full

7. When the last piece of data has been read from the FIFO, it checks that the FIFO is not full
and is empty

8. Verifies that cycling the clock and trying to underflow the FIFO doesn’t cause any corruption
of data or corruption of the full and empty flags

9. Checks that the data read from the FIFO matches the data that was originally written to the
FIFO

10. Prints out test debug info

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 5

This testbench tests one particular way of interfacing with the FIFO. Of course, it is not com-
prehensive, and there are conditions and access patterns it does not test. We recommend adding
some more tests to this testbench (or writing a new testbench) to verify your FIFO performs as
expected. Here are a few tests to try:

• Several times in a row, write to, then read from the FIFO with no clock cycle delays. This
will test the FIFO in a way that it’s likely to be used when buffering user I/O.

• Try writing and reading from the FIFO on the same cycle. This will require you to use
fork/join to run two threads in parallel. Make sure that no data gets corrupted.

4 Building the Piano

The piano interfaces the UART with the tone generator. Its job is to fetch notes sent from the
UART, convert them to a tone_switch_period, and send them to the tone_generator for a fixed
note length. This is the ‘piano’ module in the diagram in the lab intro.

Fill in src/piano.v. It has access to the UART transmitter FIFO, the UART receiver FIFO, and
the tone_generator inputs. It also has access to a reset signal and the other buttons. The piano
should implement the following functionality:

• When the UART receiver FIFO contains a character, the FSM should pull the character from
the FIFO and echo it back without modification through the UART transmitter FIFO.

• Once a character is pulled, its corresponding tone should be read from the supplied piano_scale_rom.v.

• For a fixed amount of time (note_length), the tone should be played by sending it to the
tone_generator. This will be done later in z1top.

• The note_length should default to 1/5th of a second, and can be changed by a fixed amount
with the buttons. Let buttons[0] increase/decrease the note_length depending on the value
of switches[0]. This is similar to the runtime tempo modification you implemented in the
music_streamer. Make sure you have considered the overflow this time!

• Through doing all of this, your FSM should take care to ensure that if a FIFO is full, that it
waits until it isn’t full before pushing through data.

• You can use the leds output for debugging

You don’t need to design the piano as an explicit FSM with states; the design is entirely up to
you.

A ROM containing mappings from ASCII character codes to the tone_switch_period of the note
to be played can be found in src/piano_scale_rom.v. If you wish to re-generate this file, use
these commands:

cd lab6

python scripts/piano_scale_generator.py scale.txt

python scripts/rom_generator.py scale.txt src/piano_scale_rom.v 256 24

Modify piano_scale_rom.v to change the module name to 'piano_scale_rom'

It is possible that the UART receiver FIFO can fill up with samples so fast that the piano can’t

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 6

keep up; similar overflow conditions are possible with other parts of this system. You don’t need to
concern yourself with detecting ’backpressure’ on the entire system and can just assume that your
FIFOs are large enough to buffer all the user input.

4.1 Modify z1top

Open up z1top.v and modify it to include the new modules you wrote. Wire up the FIFOs and
your piano + tone generator according to the block diagram in the lab intro. You will have to add
a few lines of logic (purple cloud) representing the bridge between the ready/valid interface and
the FIFO’s rd_en, wr_en, full, empty interface. Depending on your implementation, you may
also want to change some wires to regs, which is totally fine.

Make sure that you parameterize your FIFOs properly so that they have the proper data_width.
You can make your FIFOs as deep as you want, but 16 should be enough.

5 Writing a System-Level Testbench

This section is optional but highly recommended. This design involves quite a few moving parts that
communicate with each other. We want to make sure that the complete integration of our system
works as expected. To that end, you will have to write a system-level testbench that stimulates
the top-level of your design and observes the top-level outputs to confirm correct behavior.

We have provided a template for a system testbench in sim/system_testbench.v. Fill in the
initial block to test all the parts of the piano.

To make the waveform shorter and easier to debug, it is suggested that you change the note_length
default value in the piano to something much smaller than 1/5th of a second, just for testing.

6 FPGA Testing

Generate a bitstream and program the FPGA as usual. Read the synthesis and implementation
reports (build/synth/synth.log) to see if there are any unexpected warnings.

You should watch out specifically for warnings like “found x-bit latch” or “x signal unconnected”
or “x signal assigned but never used”. If you see that the synthesis tool inferred a latch, you should
definitely fix that warning by completing any if-elseif-else or case statements that don’t have a
default signal assignment. The other 2 warning types are dependent on your design and you should
ignore them only if you know they are expected.

Once you put your design on the FPGA, you can send data to the on-chip UART by using:

sudo screen /dev/ttyUSB0 115200.

The piano keys are mapped such that ‘z’ through ‘<’ go from C3 to C4 (middle C) and ‘q‘ through
’i’ go from C4 to C5. Holding down shift (upper case) moves the lower row’s octave down and the
upper row’s octave up.

To close screen, type Ctrl + a then Shift + k and answer y to the confirmation prompt.

You can use the 1st button to change the note_length of your piano. You should test the case
where you make the note_length long, and fill up your UART FIFO by typing really fast. Then
watch your FIFO drain slowly as each note is played for note_length time.

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 7

For Checkoff: Save the bitstream of the fixed note length piano by copying the build directory,
so it can be used during checkoff:

cp -r build build_fixed

7 Bonus: Variable Note Lengths

We would like to set the length of each note based on how long each key is pressed, instead of having
a fixed note length. We have provided a Python script that captures keyboard keyup/keydown
events and translates them into 2 UART frames (a packet) indicating whether a note should begin
playing or finish playing:

• A key press causes 2 UART frames to be sent in order: 0x80, character where character

is the key that was pressed

• A key release causes 2 UART frames to be sent in order: 0x81, character where character

is the key that was released

Once you get a key press packet, you should begin playing the note associated with character,
similar to before. If you get a key release packet that has a matching character with the note
being played, you should stop playing it.

If you’re playing a note and you get key press packet, you should throw it away. If you’re playing
a note and get a key release packet for a different character, you should throw it away.

You don’t have to drive any characters into the UART TX in this part. Drive an LED indicating
when a note is being played.

7.1 Testing

(Optional) Modify the system_testbench to test variable length note playing, and test the edge
cases where multiple keys are pressed before they are released.

Program it on the FPGA as usual. Then run sudo python3 scripts/piano.py which captures
keyboard events and sends them to the FPGA via UART. You can play the same notes as before-
hand.

7.1.1 Testing Locally

First, install some python packages (pip3 install pynput pyserial).

If you’re using Linux or OSX, you may have to launch the piano.py script with sudo. On Ubuntu,
you may have to run this line first if you get an X11 error (xhost si:localuser:root).

If you’re on Windows, in addition to installing the Python packages, you should modify the
scripts/piano.py file (line 10) with the COM port assigned to the USB-UART device (according
to the Device Manager).

8 Checkoff Tasks

1. If applicable, show the system-level testbench you wrote and its methodology for testing your
piano’s functionality. Which bug(s) did you find with your testbench?

https://stackoverflow.com/questions/48833451/no-protocol-specified-when-running-a-sudo-su-app-on-ubuntu-linux

EECS 151/251A FPGA Lab 6: FIFOs, UART Piano 8

2. Explain how data moves through your system.

3. Demonstrate the piano working on FPGA. Prove the existence of your UART RX and TX
FIFOs by making the note length long, then pressing multiple keys in quick succession, filling
the RX FIFO, and seeing the notes drain out slowly into the piano.

4. Bonus: Demonstrate the variable note length piano working on the FPGA.

8.1 Lab Report

No lab report! Please get all labs checked off by the end of next week to receive full credit. Here
is the checkoff record.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

• Fa19: Vighnesh Iyer, Rebekah Zhao, Ryan Kaveh

• Fa20: Zhenghan Lin, Charles Hong, Kareem Ahmad

https://docs.google.com/spreadsheets/d/1ZUPTG2rE4CVUsfTY-oqojRVVYIQQled77mZp0C1XBVA/edit?usp=sharing

	Before you start this lab
	Overview
	Buliding a Synchronous FIFO
	FIFO Functionality
	FIFO Interface
	FIFO Timing
	FIFO Testing

	Building the Piano
	Modify z1top

	Writing a System-Level Testbench
	FPGA Testing
	Bonus: Variable Note Lengths
	Testing
	Testing Locally

	Checkoff Tasks
	Lab Report

