EECS 151/251A Homework 1

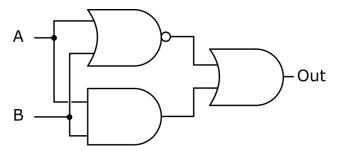
Due Friday, Sept 11th, 2020

Problem 1: Dennard Scaling [4 pts]

Imagine that we still live in the world of ideal Dennard scaling. You designed a brilliant laptop microprocessor that runs at 4GHz, but dissipates 45W. What would be its power and performance in the next technology node, with features that are scaled by a factor of 0.8?

Problem 2: Wafer Yield [4 pts]

You want to fabricate a new chip using TSMC's 5nm node. You will use 600 mm wafers with $\alpha=3$ and a defect per unit area of $0.001\,/\mathrm{mm^2}$. The die area is $1\,\mathrm{cm^2}$ and the wafer cost is \$80k. What is your die yield and die cost?

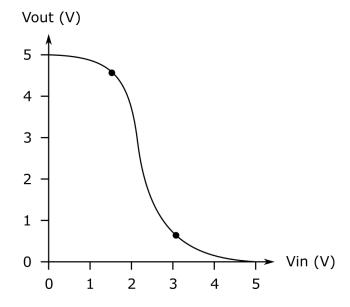

Problem 3: Power and Energy [6 pts]

- (a) Briefly explain why as a designer you would be concerned with the following. Give 2 reasons each. Think about the applications of your design. [1 pt each]
 - Energy Consumption
 - Power Consumption
- (b) You find yourself are in charge of designing a battery and charger for a new laptop that dissipates 50W. If you expect this laptop to have 9 hours of battery life, how much energy (in Joules) must the battery hold at a full charge? [2 pts]
- (c) To ensure that users can use the laptop while it charges, you decide that the laptop should charge from 0 to 100% in 2 hours if it is in use. How much power should the charger be able to supply for this to be possible? [2 pts]

Version: 1 - 2020-09-02 00:55:49-06:00

Problem 4. Boolean Logic [6 pts]

(a) For the digital logic circuit shown below, give the truth table. What is the equivalent boolean operation of this circuit? [3 pts]



(b) By inspection, draw the equivalent circuit for the given truth table using simple logic gates. You should not use more than 4 logic gates. [3 pts]

A	В	\mathbf{C}	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Problem 5. Noise Margins [5 pts]

Estimate V_{OH} , V_{IH} , V_{OL} , V_{IL} , and the noise margins for the voltage transfer characteristic shown below. The dots along the line show roughly where the slope = -1.

Version: 1 - 2020-09-02 00:55:49-06:00