
EECS 151/251A Homework 10

Due Friday, Dec 4th, 2020

Problem 1: Timing [16 points]

Consider the following sequential circuit. The minimum and maximum logic delays are annotated
on the figure. The flip-flops have the following properties: tclk−q = 50ps, tsetup = 50ps, and
thold = 25ps.

a) Let’s first assume that the clock has no jitter. What is the minimum clock cycle time for this
circuit?
Solution:
The longest delay is on path CL1:

Tclk ≥ tclkq + tp,max,CL1 + tsetup

Tclk ≥ 50ps+ 500ps+ 50ps
Tclk ≥ 600ps

Note: strict or non-strict inequalities are acceptable.

b) Under the conditions established so far, does the circuit meet all hold time requirements?
Explain.

Solution:
Yes. The shortest delay path is on CL2:

thold ≤ tclk−q + tp,min,CL2

25ps ≤ 50ps+ 25ps
25ps ≤ 75ps

Note: strict or non-strict inequalities are acceptable.

c) Now let’s include a clock distribution network for this circuit, as shown below. Assume the
delay of each clock buffer has an delay of 50ps (unaffected by fanout, etc.) and has no
variation. Continue to assume no jitter. What is the minimum clock cycle time?

EECS 151/251A Homework 10 2

Solution:
The clock arrives at the flip-flop after CL1 50ps later than the the flip-flop before CL1
(positive clock skew due to an unbalanced clock tree). Using the same analysis as part
a) but subtracting a clock skew term to the RHS, we can see that the clock cycle time
can now be 550ps.

Tclk ≥ tclkq + tp,max,CL1 + tsetup − tskew

Tclk ≥ 50ps+ 500ps+ 50ps− 50ps
Tclk ≥ 550ps

Note: strict or non-strict inequalities are acceptable.

d) Under the same conditions as c), do we have any hold time violation?

Solution:
The clock skew introduced by this network improves the margin for the path in part b)
(CL2). However, there is a new path we should analyze: CL1. It ends up still having no
violation by the same margin as part b).

thold + tskew ≤ tclk−q + tp,min,CL1

25ps+ 50ps ≤ 50ps+ 75ps
75ps ≤ 125ps

Note: strict or non-strict inequalities are acceptable.

e) Now let’s introduce 50ps of maximum cycle-to-cycle clock jitter. Do your answers from c)
and d) change? Explain.

EECS 151/251A Homework 10 3

Solution:
Yes. The clock jitter is at the root of the clock tree, which means it doesn’t cause any
additional clock skew for a common clock edge. But, because it is cycle-to-cycle jitter, it
but reduces the clock cycle time for setup time analysis.
For minimum cycle time, we need to add the jitter to the RHS (treating it as negative
skew), causing the min. cycle time to increase:

Tclk ≥ tclkq + tp,max,CL1 + tsetup + tjitter − tskew

Tclk ≥ 50ps+ 500ps+ 50ps+ 50ps− 50ps
Tclk ≥ 600ps

For hold time, there are two cases to consider:
Case 1: the jitter is assumed to be at the root of the clock tree. As a result, all of the
registers experience the jitter equally at the same clock edge for hold time analysis, so
we still have the same margin as d) of 50ps.
Case 2: the jitter is assumed to be created by the clock tree buffers. In this case, we must
consider it as additional skew, which lowers the margin to 0ps (violation if non-strict
inequality).

f) Repeat parts c) and d), but now with the condition where each clock buffer’s delay varies
randomly by ±20%. Analyze the timing first with no clock jitter, followed by with clock jitter
(same amount as part e)).

Solution:
Without clock jitter:

• We now need to take into account the worst case skew between the flip-flops, given
that clock buffer delay can vary by ±10ps.

• Since the flip-flops around CL3 only vary by 1 clock buffer each (±20ps max), so it
doesn’t create any new setup/hold violation.

• The flip-flops around CL1 vary by much more, however, because the common
branching point is further back in the clock network. In the worst case, the vari-
ation is ±50ps. Because of this, the min. cycle time is analyzed similarly to part
e). However, delay variation affects hold time, and we just meet the hold time con-
straint through CL1, as shown below (if the inequality is not strict, otherwise it’s a
violation).

thold + tskew ≤ tclk−q + tp,min,CL1 − tvariation

25ps+ 50ps ≤ 50ps+ 75ps− 50ps
75ps ≤ 75ps

With clock jitter:

• The minimum clock cycle time would increase by a further 50ps to 650ps.

EECS 151/251A Homework 10 4

• If considering Case 1 for jitter, hold time is unaffected by cycle-to-cycle jitter, so
we still just meet the constraint (or violate if the inequality is strict). If considering
Case 2, then we will violate by 50ps.

g) (251A students only) As you have (hopefully) analyzed, this clock distribution network was
designed to increase performance, but only in the absence of both clock buffer delay variation
and clock jitter. In practice, both clock distribution networks and combinational paths are
adjusted to meet setup and hold timing constraints. Your task is to improve on the circuit
in part c) given the following rules:

• The combinational logic blocks as given cannot be modified (fixed min./max. delay,
logic configuration).

• You may add combinational logic buffers of any amount of delay. You can assume
these buffers have no delay variation.

• The depth of the clock distribution network must be at least 3 buffers deep.
• The maximum fanout of clock buffers is 2. The load can be clock buffers or flip-flop

clock pins, which are assumed equivalent for this problem. Fanout doesn’t affect clock
buffer delay for this problem.

• Clock buffer delay variation and cycle-to-cycle clock jitter is now present, with the same
values as above.

Propose a new circuit configuration that will have at least 50ps hold time margin (we’re
really paranoid!) while minimizing the cycle time in the presence of delay variation and
jitter. Include a diagram and explain.

Solution:
There may be multiple solutions (some with larger min. cycle time – only the analysis
matters), but here is one:

• We know that delaying the first flip-flop’s clock relative to the second one is helpful
for minimizing cycle time, so let’s keep 4 clock buffers to the first and 3 buffers to
the second.

• Since the clock distribution network doesn’t affect the contribution of clock jitter,
we want to try to minimize the clock skew as much as possible. This means we
want to make the last clock branching point as close to the flip-flops as possible. To
achieve this, a clock buffer should drive both the second flip-flop and the remaining
clock buffer for the first flip-flop, reducing the delay variation to just ±10ps.

• For Case 1 jitter assumption, this results in just 40ps of hold time margin. To get
the remaining 10ps, we will need to add a logic buffer to the path to increase its
delay of 10ps. For Case 2 jitter assumption, this results in a 60ps logic buffer delay.

• Therefore, the min. clock cycle will be 620ps for Case 1 jitter assumption, (50ps
jitter + 10ps delay variation + 10ps hold buffer on top of 550ps from part c)), or
680ps for Case 2 jitter assumption.

EECS 151/251A Homework 10 5

EECS 151/251A Homework 10 6

Problem 2: SRAM [14 points]

The following 7T SRAM was once proposed and claimed to save power as compared to a standard
6T SRAM. Like the 6T SRAM, there is only 1 pair of bitlines, a read word line (R), and a write
word line (WL). There is a new signal, W, that cuts off the feedback connection between the
cross-coupled inverters before a write operation. W is logically equivalent to WL during a write
operation, and high otherwise. R and WL are both high during read, while only WL is high during
a write.

a) Determine which transistors are involved in a Write operation. How is this different from
a 6T SRAM cell? Comment on how sizing can be used to overcome the difference between
writing a "0" (BL=0) and a "1" (BL=1). Do we have the same sizing concerns as a 6T SRAM
for write?

Solution:
The write operation is done from only a single bitline, and essentially uses an inverter
chain before the feedback is re-established:

When writing a "1", the N3 NMOS passes a good 0 - no issue. Sizing is unclear here
because there’s no contention between what’s already stored and what’s trying to be

EECS 151/251A Homework 10 7

written compared to a 6T SRAM.
When writing a "0", N3 passes a bad 1, so it needs to have a skewed inverter (N2 stronger
than P2) as well as a strong N3 to reduce delay relative to writing a 1. It is equally valid
to say that sizing is also unclear here since you did not learn about skewing gates.

b) Determine which transistors are involved in a Read operation. How is this different from a 6T
SRAM cell? Comment on how sizing can be used to overcome the difference between reading
a "0" and a "1". Do we have the same sizing concerns as a 6T SRAM for read?
(251A students only) Are there any additional problems with this cell compared to a 6T
SRAM cell?
Solution:
The read operation is different depending on whether the cell stored a "0" or "1":

When reading a "0", it is very similar to a 6T SRAM. N2 should be sized larger than N4.
When reading a "1", there is an extra transistor to go through. N1 should be sized larger
than N3. N5 also probably needs to be large too.
(251A) The problem is the weaker feedback path for when the cell is storing a "0" as
compared to the 6T SRAM. Q2 can’t be pulled up to Q_bar well, causing the inverter
with N2/P2 to probably leak because P2 isn’t as fully off. The solution would be to
boost the W signal above the supply voltage or make P2 quite weak (which is required
by the write operation anyway).

c) Qualitatively explain how this scheme saves power. What might be the penalty of this? For
what applications might this be useful?

Solution:
This has the potential to save power because only one of the bitlines needs to be pulled
low after precharge for a write operation. So, writing a "0" (BL=0, BL_bar=1) would
not require the bitlines to change at all, thereby saving switching power. The power
saving improves the more "0"s are stored in the SRAM array, which could be useful for
some sparse data applications or data caches.
Penalties: Because writing is an inverter cascade, it will be slower to write than a 6T
SRAM cell. It also is larger than a 6T SRAM cell due to the extra transistor and sizing
constraints, in addition to requiring extra wires for R and W without adding additional

EECS 151/251A Homework 10 8

port functionality (still 1R1W).

d) Qualitatively explain how reducing the cell supply voltage without changing signal voltage
levels external to the cell affects the read stability, read access time, writability, and write
delay of the cell.
(251A students only) Does this help solve any additional problems from part b)?

Solution:
• Decreasing the supply voltage decreases the cell’s ability to retain data (reduced

read stability).
• The read access time is decreased.
• Writability is mostly unchanged for writing a "1" since there’s no contention. How-

ever, it actually somewhat improves when writing a "0" since the issue of N3 passing
a bad 1 is lessened if the bitline’s voltage is higher than the cell voltage, requiring
less sizing weirdness.

• Write delay of the cell would increase because the inverter cascade is slower.
• (251A) The leakage can be reduced because the W signal is boosted over the cell

voltage.

EECS 151/251A Homework 10 9

Problem 3: Cache [10 points]

a) Let’s review cache associativity. For a direct-mapped cache, a 4-way set associative cache,
and a fully-associative cache, rank them (1st, 2nd, or 3rd) on the following metrics. Explain
your ordering for each metric.

Solution:

Metric Direct-mapped 4-way set associative Fully-associative
Hardware
simplicity of tag
checking

1st 2nd 3rd

Cache hit rate 3rd 2nd 1st
Cache hit time
(for a given size)

1st 2nd 3rd

Cache placement
flexibility

3rd 2nd 1st

Cache
replacement
policy flexibility

3rd 2nd 1st

• For all metrics, 4-way set-associative is always in between because its a tradeoff
between direct-mapped and fully-associative.

• For tag checking, direct-mapped is the simplest because only 1 tag needs to be
checked, In contrast, fully-associative needs to compare against all the tag bits
across all cache lines, so it is the most complex.

• For cache hit rate, direct-mapped is lowest because there is only 1 line per set,
increasing the probability of conflict misses. Fully-associative by definition has none,
and we can use the placement/replacement policy to maximize cache hits!

• For cache hit time, the more ways we have, the more inputs we need to have in a
mux that selects between the ways for the output data.

• For cache replacement policy flexibility, direct-mapped has no flexibility while we
can implement many different policies for fully-associative since we can place data
in any cache line. As for cache placement flexibility, this only affects cold start,
but with more associativity we have more freedom to choose how to order the ways
within a set.

b) For the LRU replacement policy, we need to keep track of all the relative ages of each block
within a set in order to determine which one is the least recently used. For a 4-way set-
associative cache, what is the minimum number of age bits per set needed to implement
LRU?

Solution:
We need 6 bits (this is just a combinatorics problem):
bit 0: block[1] more recently used than block[0]

EECS 151/251A Homework 10 10

bit 1: block[2] more recently used than block[0]
bit 2: block[2] more recently used than block[1]
bit 3: block[3] more recently used than block[0]
bit 4: block[3] more recently used than block[1]
bit 5: block[3] more recently used than block[2]
(Note: "more" above can be replaced by "less" and ordering doesn’t matter)

c) There is an approximation of LRU that uses a binary decision tree for a 4-way set-associative
cache. In this algorithm, each node of the tree denotes which half of the lines in the set are
older (or newer). Draw a diagram of what this binary tree looks like and then two truth
tables: one of how the decision tree bits translate to which line to replace, and the other of
what the next decision tree bits would be given a reference to each line (you may need to use
X’s and notation for unchanged). How would this scale with larger set-associativity, and how
does it compare with exact LRU?

Solution:
This replacement policy is commonly called pseudo-LRU.
Let a 1 bit denote that the lower half has been used more recently than the other half
(opposite encoding is also valid).

are all 4 lines valid?
/ \

yes no, use an invalid line
|
|
|

bit_0 == 0? state | replace ref to | next state
/ \ ------+-------- -------+-----------

y n 00x | line_0 line_0 | 11_
/ \ 01x | line_1 line_1 | 10_

bit_1 == 0? bit_2 == 0? 1x0 | line_2 line_2 | 0_1
/ \ / \ 1x1 | line_3 line_3 | 0_0

y n y n
/ \ / \ ('x' means ('_' means

line_0 line_1 line_2 line_3 don't care) unchanged)

This scales with log2(N) where N is the degree of associativity. This is smaller than exact
LRU (which using the scheme from b) is

(N
2

)
).

d) Nowadays, processors use multi-level caches to improve the average memory access time
(AMAT). The AMAT is defined as: AMAT = hit time + miss rate ∗ miss penalty. Given
a 3-level cache with the following specs, where a miss in a higher-level (i.e. lower number)
cache goes to the next lower-level cache, calculate the overall AMAT.

EECS 151/251A Homework 10 11

Level Access Time Miss Rate
$L1 1ns 10%
$L2 5ns 2%
$L3 10ns 1%

Main memory 50ns N/A

Table 1: Memory hierarchy parameters

Solution:
The key is knowing that hit time is the access time for the current level cache and miss
penalty is the access time for the next lower-level cache. AMAT = 1ns + (0.1 ∗ (5ns +
0.02 ∗ (10ns+ 0.01 ∗ 50ns))) = 1.521ns

EECS 151/251A Homework 10 12

Problem 4: DRAM [Ungraded! Just for your own fun :)]

As you have learned, DRAM is significantly more dense than SRAM. Specifically, it has a footprint
of 1 transistor/cell and has a trench capacitor under one terminal (look it up!). However, DRAM
requires refreshing due to those leaky trench capacitors. A commonly cited characterization for
DDR3 retention time is 64 ms @ 85°C. The retention time is highly inversely proportional to
temperature and has cell-to-cell variation.

a) The refreshing is normally accomplished row-by-row. The average time between refreshes is
specified at 7.8µs to minimally impact access latency (remember, the array is inaccessible
during a refresh!). To the nearest power of 2, what is the maximum number of rows we can
have in our SRAM array to ensure we never lose data at 85°C?

Solution:
64ms/7.8µs = 8205. The closest lower power of 2 is 8192 rows.

b) If we’re limited by how many rows we can have in the array, we can make larger DRAM
capacity by growing the number of columns (essentially the word size). However, the DRAM
interface is only 64bits for DDR3. How should we partition the DRAM so that we don’t
unnecessarily destructively read and then refresh cells?

Solution:
We need to break up the array further column-wise. At the extreme, we only read 64bits
at a time and bank our DRAM accordingly. In practice, however, bank widths are much
greater than this (usually DRAM reads are done in bursts anyway) and so you pipeline
the data out to improve throughput.

c) Liu et al. [ISCA 2012] found that 64 ms is highly pessimistic, due to it being at the tail end
of a manufacturing process variation distribution. It was found retention times are more like
the following:

Propose as many techniques as you wish to reduce on average how often we need to refresh our
DRAM, given the retention time profile and the temperature dependence described earlier.
Briefly explain how they would work and what overhead they would have. The thought
process matters more than accuracy for this problem!

EECS 151/251A Homework 10 13

Solution:
Here are a few techniques:

• Characterize which rows have longer retention times (at manufacture or in situ),
and schedule those refreshes less often. Requires more complex refresh logic.

• Use redundant rows. Characterize which rows have the shortest retention times at
manufacture, disable them, then replace them by the redundant rows. Then, refresh
the whole array less often. Requires reconfigurable decode logic.

• Measure the DRAM temperature, and follow a pre-characterized curve of retention
time. Requires a temperature sensor and more complex refresh logic.

• Use redundant columns and use error detection and correction. This can allow per-
haps 1+ cell per byte/word to leak away but still have a recoverable read. Requires
extra ECC en/decoding logic.

