# EECS 151/251A Homework 1 

Due Friday, Sept 11 ${ }^{\text {th }}$, 2020

## Problem 1: Dennard Scaling [4 pts]

Imagine that we still live in the world of ideal Dennard scaling. You designed a brilliant laptop microprocessor that runs at 4 GHz , but dissipates 45 W . What would be its power and performance in the next technology node, with features that are scaled by a factor of 0.8 ?

## Solution:

$s=0.8, \kappa=\frac{1}{0.8}=1.25$
Delay improves by 1.25 , so the max frequency can be $4 \cdot 1.25=5 \mathrm{GHz}$.
Power density remains the same, but power dissipation scales with $s^{2}$, so power dissipation is $45 \cdot(0.8)^{2}=28.8 \mathrm{~W}$

## Problem 2: Wafer Yield [4 pts]

You want to fabricate a new chip using TSMC's 5 nm node. You will use 600 mm wafers with $\alpha=3$ and a defect per unit area of $0.001 / \mathrm{mm}^{2}$. The die area is $1 \mathrm{~cm}^{2}$ and the wafer cost is $\$ 80 \mathrm{k}$. What is your die yield and die cost?

## Solution:

$$
\begin{gathered}
\text { Die Yield }=\left(1+\frac{0.001 / \mathrm{mm}^{2} \cdot 100 \mathrm{~m}^{2}}{3}\right)^{-3}=0.906 \\
\text { Dies per wafer }=\frac{\pi \cdot(600 \mathrm{~mm} / 2)^{2}}{100 \mathrm{~mm}^{2}}-\frac{\pi \cdot 600 \mathrm{~mm}}{\sqrt{2 \cdot 100 \mathrm{~mm}^{2}}}=2700 \\
\text { Die Cost }=\frac{\$ 80,000}{31000 \cdot 0.906}=\$ 32.70
\end{gathered}
$$

## Problem 3: Power and Energy [6 pts]

(a) Briefly explain why as a designer you would be concerned with the following. Give 2 reasons each. Think about the applications of your design. [1 pt each]

- Energy Consumption
- Power Consumption
(b) You find yourself are in charge of designing a battery and charger for a new laptop that dissipates 50 W . If you expect this laptop to have 9 hours of battery life, how much energy (in Joules) must the battery hold at a full charge? [2 pts]
(c) To ensure that users can use the laptop while it charges, you decide that the laptop should charge from 0 to $100 \%$ in 2 hours if it is in use. How much power should the charger be able to supply for this to be possible? [2 pts]


## Solution:

(a) Answers may vary. Examples of reasons are battery life and total cost of ownership.
(b) Answers may vary. Examples of reasons are heating, cost of cooling.
(c) Energy $=$ Power $\cdot$ Time $=50 \mathrm{~W} \cdot 9 \mathrm{~h}=50 \mathrm{~W} \cdot 32400 \mathrm{~s}=1,620 \mathrm{~kJ}$
(d) Power $=$ Power_to_charge + Power_to_run $=$ frac1, $620 \mathrm{~kJ} 2 \cdot 3600 \mathrm{~s}+50 \mathrm{~W}=275 \mathrm{~W}$

## Problem 4. Boolean Logic [6 pts]

(a) For the digital logic circuit shown below, give the truth table. What is the equivalent boolean operation of this circuit? [ 3 pts ]

(b) By inspection, draw the equivalent circuit for the given truth table using simple logic gates. You should not use more than 4 logic gates. [3 pts]

| A | B | C | Out |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Solution:

(a) Truth Table

| A | B | C |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

This is the XNOR boolean function.
(b) By inspection, Out is only 1 when B is 1 and either A or C is 1 . An equivalent circuit for this is shown below:


## Problem 5. Noise Margins [5 pts]

Estimate $V_{O H}, V_{I H}, V_{O L}, V_{I L}$, and the noise margins for the voltage transfer characteristic shown below. The dots along the line show roughly where the slope $=-1$.


## Solution:

Will accept any answers within 0.25 of the following values.
$V_{O H} \approx 4.5, V_{I H} \approx 3.0, N M_{H} \approx 1.5, V_{O L} \approx 0.5, V_{I L} \approx 1.5, N M_{L} \approx 1.0$


