
EECS 151/251A Homework 2

Due Friday, Sept 18th, 2020

For this HW Assignment

You will be asked to write several Verilog modules as part of this HW assignment. You will
need to test your modules by running them through a simulator. A useful tool is https://www.
edaplayground.com, a free, online Verilog simulator.

For all problems, include your Verilog code, test bench, and test results (including the simulation
output and a waveform). Also explain what aspects of your design are being verified by your
testbench.
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Problem 1: Find the Errors [4 pts]

For each module, identify the common mistake in the code and explain how it will cause the module
to function incorrectly. Some useful resources:

• Verilog Primer Slides
• wire vs reg
• always@ blocks

(a) The following module is meant to be a simple 2-to-1 multiplexer with the output being set
to input a when sel=0, and b when sel=1. [1 pt]

module mux2to1(
input a, b, sel,
output reg out

);
always @(a or b) begin

if(sel)
out = b;

else
out = a;

end
endmodule

(b) In the following module, input a can have any value. priority should take the most signifi-
cant bit of a that is 1 (if any) and set the corresponding bit of out to 1. All other bits should
be set to 0. [1 pt]

module priority(
input [3:0] a,
output reg [3:0] out

);
always @(a) begin

if (a[3]) out = 4'b1000;
else if (a[2]) out = 4'b0100;
else if (a[1]) out = 4'b0010;
else if (a[0]) out = 4'b0001;

end
endmodule
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(c) The following module is meant to be a 3-input and gate built from 2-input and gates. [1 pt]

module and3(
input a, b, c,
output reg y

);
reg tmp;
always @(a or b or c) begin

tmp <= a & b;
y <= tmp & c;

end
endmodule

(d) The following code is meant to be for a sequential pipeline register. Diagram of the intended
design: [1 pt]

module pipeline_reg (
input clk,
input[7:0] d,
output [7:0] q3

);
reg [7:0] q3, q2, q1;
always @(posedge clk) begin

q1 = d;
q2 = q1;
q3 = q2;

end
endmodule
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Problem 2: One-hot to Binary Encoder [4 pts]

One-hot encoding is an alternative to binary encoding. For example, in 8-bit one-hot encoding, the
number 0 is represented as 00000001, the number 1 is 00000010, 2 is 00000100, 3 is 00001000, ...,
7 is 10000000. It is called “one-hot” because only 1 bit is ever on at a time. Compared to other
encodings (like binary), one-hot encoding in hardware trades additional bits of state for reduced
decode logic. In particular, this is useful for finite state machines where one flip-flop can represent
each state. Consider a circuit to convert 2-bit binary numbers to one-hot code.

(a) Write a Verilog module that implements a one-hot code to binary number converter. This
converter takes in 8 bits and outputs 4 bits. If the input is a legal one-hot code, the lower
3 bits of the output are the corresponding binary number and the 4th bit is set to 0. If the
input is not a legal one-hot code, we do not care about the lower 3 bits, and the 4th bit is set
to 1. Use Verilog continuous assignment to describe the circuit. [2 pts]

(b) Write a testbench to verify the behavior of the converter. Make sure to test multiple cases
where the input is a legal one-hot code, and multiple cases where the input is not a legal
one-hot code. [2 pts]

Problem 3: Linear-Feedback Shift Register [5 pts]

In this exercise, you will implement an 8-bit linear feedback shift register (LFSR). An LFSR gener-
ates pseudo-random numbers using bitwise operations. Applications of LFSRs include digital TV,
CDMA cellphones, Ethernet, USB 3.0, and more!

On each rising edge of the clock, you will shift the contents of the register 1 bit to the right. On
the left side, you will shift in a single bit equal to the Exclusive Or (XOR) of the bits originally in
position 0, 3, and 5. Note that in the diagram, the leftmost bit is bit 7 and the rightmost bit is bit
0.

(a) Write a Verilog module to implement the above listed operation. The module should include
a reset signal that initializes the register to the following value: 8’h01. [2.5 pts]

(b) Write a testbench to verify the behavior of the LFSR. Check that first few outputs from the
shift register match what you calculate by hand. [2.5 pts]
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Problem 4: Branch History Table [6 pts]

One type of CPU instruction is a branch instruction. A branch instruction is effectively an if
statement that determines whether we will go to a different part of our code (be "taken"), or
continue executing code at the current location ("not taken"). As we will learn later in this class,
in pipelined CPUs it is useful to predict whether a branch instruction will be taken or not. If we
predict correctly that the branch should be taken, then the CPU can go ahead and start fetching
instructions from the new location in the code, improving performance.

Each CPU instruction has an address, like a line number in a computer program. To predict
whether a given branch instruction will be taken, we can create a buffer called a Branch History
Table (BHT):

In this BHT, each row is indexed by the lower bits of the instruction address. Each row stores a 2-
bit saturating counter that indicates whether the branch was recently taken. Whenever we find out
whether a previously executed branch instruction was taken or not, we update the corresponding
row in our table. If the branch was taken, the counter increments; if it was not taken, the counter
decrements. Each counter "saturates" at 0 and 3, meaning it cannot decrement or increment beyond
these values. We predict whether new branch instructions will be taken or not taken based on the
upper bit of the counter in the corresponding row—if it is 1, we predict taken, if it is 0, we predict
not taken. With around 4000 entries, even a branch predictor this simple can achieve 80-90%
prediction accuracy on real programs.
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(a) Write a Verilog module that implements a 2-bit branch history table with a configurable
number of entries. Each entry should be set to 2’b01 when a reset signal is asserted. Here is
an example of the parameters and ports that should be in your design:

module bht #(
parameter table_size = 4096,
parameter addr_len = $clog2(table_size)

)(
input clk, rst,
input [addr_len-1:0] addr_update,
input update, taken,

input [addr_len-1:0] addr_predict,
output take_branch

);

In this example, the table would be updated on each rising edge of clk according to addr_update,
update, and taken, which indicate the address of a previous instruction, whether it was a
branch instruction, and whether it was taken, respectively. The output take_branch would
be set according to whether a branch instruction at address addr_predict should be predicted
taken or not taken. Your design should function identically. [3 pts]

(b) Write a testbench to verify the behavior of the BHT. [3 pts]
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