EECS 151/251A Homework 3

Due Friday, Sept $25^{\text {th }}, 2020$

For this HW Assignment

You will be asked to write several Verilog modules as part of this HW assignment. You will need to test your modules by running them through a simulator. A useful tool is https://www. edaplayground.com, a free, online Verilog simulator.

For all problems, include your Verilog code, test bench, and test results (including the simulation output and a waveform). Also explain what aspects of your design are being verified by your testbench.

Problem 1: Logic Simplification [5 pts]

Take this truth table consisting of 4 input variables(A, B, C, D) and 1 output(Out):

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	Out
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

1. Write a sum-of-products directly from the truth table. [1 pt]
2. Use a Karnaugh Map to simplify the logic and write the simplified sum-of-products and product-of-sums representations. [2 pts]
3. Using the simplified sum-of-products representation, draw the circuit that implements this function. Transform this circuit such that it is made up only of inverters and NAND gates. All gates should have 2 inputs and 1 output. [2 pts]

Problem 2: Combinational Logic [4 pts]

Consider the following Boolean function:

$$
\bar{a} \bar{b} \bar{c} \bar{d}+\bar{a} \bar{b} \bar{c} d+\bar{a} \bar{b} c d+a \bar{b} d+\overline{(\bar{a}+\bar{b}+c)}+\overline{(\bar{a}+\bar{b}+\bar{c})}
$$

(a) Use a K-map to simplify. Show your work. [1 pts]
(b) Use a Boolean algebra to simplify. Show your work. [1 pts]
(c) Using the simplified sum-of-products representation, draw the circuit that implements this function. Then bubble push to transform the circuit into products-of-sum form. All gates should have 2 inputs and 1 output. [2 pts]

Problem 3: FSM DNA sequencing[6 pts]

Help your TAs design a DNA sequencing machine! We want the machine to be able to detect some DNA sequences of bases(A, C, G, T) that we are interested in. The machine receives a one-hot encoded ACGT input every clock cycle, and outputs whether the sequence has been detected. OUT is pulled high for 1 clock cycle to indicate a pattern is detected, and then pulled low to prepare for the next match. The machine also has a RESET button that lets the user interrupt and start over at any time.
sequence to detect: ACCTG
inputs: ACGT(4 bits), RESET(1 bit)
output: OUT
(a) Draw the state diagram of this circuit, marking the transition conditions and output values. Your implementation should be in the style of a Moore machine. [1 pts]
(b) Write the Verilog that corresponds to your circuit in part a). Simulate your circuit using both the given and other sequences. Show the waveform. [2 pts]
(c) Draw the state diagram of this circuit as a Mealy state machine. [1 pts]
(d) Write the Verilog that corresponds to your circuit in part (c). Simulate your circuit using both the given and other sequences. Show the waveform. [2 pts]

