
EECS 151/251A Homework 3

Due Friday, Sept 25th, 2020

2020-10-03

For this HW Assignment

You will be asked to write several Verilog modules as part of this HW assignment. You will
need to test your modules by running them through a simulator. A useful tool is https://www.
edaplayground.com, a free, online Verilog simulator.

For all problems, include your Verilog code, test bench, and test results (including the simulation
output and a waveform). Also explain what aspects of your design are being verified by your
testbench.

https://www.edaplayground.com
https://www.edaplayground.com

EECS 151/251A Homework 3 2

Problem 1: Logic Simplification [5 pts]

Take this truth table consisting of 4 input variables(A, B, C, D) and 1 output(Out):

A B C D Out
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

1. Write a sum-of-products directly from the truth table. [1 pt]

2. Use a Karnaugh Map to simplify the logic and write the simplified sum-of-products and
product-of-sums representations. [2 pts]

3. Using the simplified sum-of-products representation, draw the circuit that implements this
function. Transform this circuit such that it is made up only of inverters and NAND gates.
All gates should have 2 inputs and 1 output. [2 pts]

Solution:

1. ĀB̄CD̄ + ĀB̄CD + ĀBC̄D̄ + ĀBC̄D + ĀBCD̄ + ĀBCD + AB̄C̄D̄ + AB̄CD̄

2.

EECS 151/251A Homework 3 3

SoP: ĀB + AB̄D̄ + ĀC
PoS: (Ā + B̄)(Ā + D̄)(A + B + C)
3.

Figure 1: Direct implementation of the simplified SoP representation

EECS 151/251A Homework 3 4

Figure 2: NAND-only implementation of the simplified SoP representation

EECS 151/251A Homework 3 5

Problem 2: Combinational Logic [4 pts]

Consider the following Boolean function:

āb̄c̄d̄ + āb̄c̄d + āb̄cd + ab̄d + (ā + b̄ + c) + (ā + b̄ + c̄)

1. Use a K-map to simplify. Show your work. [1 pts]

2. Use a Boolean algebra to simplify. Show your work. [1 pts]

3. Using the simplified sum-of-products representation, draw the circuit that implements this
function. Then bubble push to transform the circuit into products-of-sum form. All gates
should have 2 inputs and 1 output. [2 pts]

Solution:
1.

ab + āb̄c̄ + b̄d

2. āb̄c̄d̄ + āb̄c̄d + āb̄cd + ab̄d + (ā + b̄ + c) + (ā + b̄ + c̄)
= āb̄c̄d̄ + āb̄c̄d + āb̄c̄d + āb̄cd + ab̄d + (ā + b̄ + c) + (ā + b̄ + c̄)
= āb̄c̄(d̄ + d) + āb̄(c̄ + c)d + ab̄d + abc̄ + abc
= āb̄c̄ + āb̄d + ab̄d + ab(c̄ + c)
= āb̄c̄ + (ā + a)b̄d + ab
= āb̄c̄ + b̄d + ab
3.

EECS 151/251A Homework 3 6

Figure 3: Direct implementation of the simplified SoP representation

Figure 4: PoS representation after bubble pushing

EECS 151/251A Homework 3 7

Problem 3: FSM DNA sequencing[6 pts]

Help your TAs design a DNA sequencing machine! We want the machine to be able to detect some
DNA sequences of bases(A, C, G, T) that we are interested in. The machine receives a one-hot
encoded ACGT input every clock cycle, and outputs whether the sequence has been detected. OUT
is pulled high for 1 clock cycle to indicate a pattern is detected, and then pulled low to prepare for
the next match. The machine also has a RESET button that lets the user interrupt and start over
at any time.

sequence to detect: ACCTG
inputs: ACGT(4 bits), RESET(1 bit)
output: OUT

1. Draw the state diagram of this circuit, marking the transition conditions and output values.
Your implementation should be in the style of a Moore machine. [1 pts]

2. Write the Verilog that corresponds to your circuit in part a). Simulate your circuit using both
the given and other sequences. Show the waveform. [2 pts]

3. Draw the state diagram of this circuit as a Mealy state machine. [1 pts]

4. Write the Verilog that corresponds to your circuit in part (c). Simulate your circuit using
both the given and other sequences. Show the waveform. [2 pts]

EECS 151/251A Homework 3 8

Solution:
1.

Figure 5: Moore FSM

2. Design:

module moore (input clk,
input rst,
input [3:0] acgt,
output out

);

localparam S0 = 0;
localparam S1 = 1;
localparam S2 = 2;
localparam S3 = 3;

EECS 151/251A Homework 3 9

localparam S4 = 4;
localparam S5 = 5;

reg [2:0] current_state, next_state;

assign out = (current_state == S5) ? 1'b1 : 1'b0;

always @(posedge clk) begin
if (rst) current_state <= S0;
else current_state <= next_state;

end

always @(*) begin
case (current_state)

S0:
begin

if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S1:
begin

if (acgt == 4'b0100) next_state = S2;
else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S2:
begin

if (acgt == 4'b0100) next_state = S3;
else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S3:
begin

if (acgt == 4'b0001) next_state = S4;
else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S4:
begin

if (acgt == 4'b0010) next_state = S5;
else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

EECS 151/251A Homework 3 10

end

S5:
begin

if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

default:
begin

next_state = S0;
end

endcase
end

endmodule

Testbench:

`timescale 1ns/1ns

module moore_test;
reg clk, rst;
reg [3:0] acgt;
wire out;

initial clk = 0;

moore dut(.clk(clk), .rst(rst), .acgt(acgt), .out(out));

always #(2) clk <= ~clk;
initial begin

$dumpfile("dump.vcd");
$dumpvars(1, moore_test);

clk = 0;

rst = 1;
#4;
rst = 0;

// sequence acctg
acgt = 4'b1000;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b0100;

EECS 151/251A Homework 3 11

#4;
acgt = 4'b0001;
#4;
acgt = 4'b0010;
#4;

// sequence cccat
acgt = 4'b0100;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b1000;
#4;
acgt = 4'b0001;
#4;
$finish();

end
endmodule

Waveform:

Figure 6: Moore FSM testbench waveform

3.

EECS 151/251A Homework 3 12

Figure 7: Mealy FSM

4. Design:

module mealy (input clk,
input rst,
input [3:0] acgt,
output reg out

);

localparam S0 = 0;
localparam S1 = 1;
localparam S2 = 2;
localparam S3 = 3;
localparam S4 = 4;

reg [2:0] current_state, next_state;
reg out_sig;

EECS 151/251A Homework 3 13

always @(posedge clk) begin
if (rst) current_state <= S0;

else current_state <= next_state;
out <= out_sig;

end

always @(*) begin
case (current_state)

S0:
begin

out_sig = 1'b0;
if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S1:
begin

out_sig = 1'b0;
if (acgt == 4'b0100) next_state = S2;
else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S2:
begin

out_sig = 1'b0;
if (acgt == 4'b0100) next_state = S3;

else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S3:
begin

out_sig = 1'b0;
if (acgt == 4'b0001) next_state = S4;

else if (acgt == 4'b1000) next_state = S1;
else next_state = S0;

end

S4:
begin

if (acgt == 4'b0010) begin
out_sig = 1'b1;
next_state = S0;

end

EECS 151/251A Homework 3 14

else if (acgt == 4'b1000) begin
out_sig = 1'b0;
next_state = S1;

end
else begin

out_sig = 1'b0;
next_state = S0;

end
end

default:
begin

next_state = S0;
out_sig = 1'b0;

end
endcase

end
endmodule

Testbench:

`timescale 1ns/1ns

module mealy_test;
reg clk, rst;
reg [3:0] acgt;
wire out;

initial clk = 0;

mealy dut(.clk(clk), .rst(rst), .acgt(acgt), .out(out));

always #(2) clk <= ~clk;
initial begin

$dumpfile("dump.vcd");
$dumpvars(1, mealy_test);

clk = 0;

rst = 1;
#4;
rst = 0;

// sequence acctg
acgt = 4'b1000;
#4;

EECS 151/251A Homework 3 15

acgt = 4'b0100;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b0001;
#4;
acgt = 4'b0010;
#4;

// sequence cccat
acgt = 4'b0100;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b0100;
#4;
acgt = 4'b1000;
#4;
acgt = 4'b0001;
#4;
$finish();

end
endmodule

Waveform:

Figure 8: Mealy FSM testbench waveform

