
EECS 151/251A Homework 4

Due Friday, Oct 2nd, 2020

Midterm Practice [1 pt]

Before you start the rest of this homework assignment, please practice the mechanics of the midterm
exam. Everything must be uploaded by Friday, October 2 (same time as this HW).

1. Make sure you read through the Exam Policy. Set up your workspace and Zoom to conform
to the rules in the policy.

2. Submit your Zoom meeting ID that you will use for the exam to this form.

3. For this mock exam, you will just solve the practice problems on the next page only. Set up
your recording and workspace according to the policy, solve the problem as you would on the
actual exam (give yourself 5 minutes), then end the recording.

4. Upload your completed problems to Gradescope, under the assignment "Practice Exam". This
will not be graded for correctness, just for completion.

5. Submit your recording link to this form. GSIs will contact you before the midterm if there
are any issues with your recording.

6. Done! Now, proceed with the HW.

Version: 1 - 2020-10-06 08:04:35Z

https://docs.google.com/document/d/1uW6hncOPDYvCYKTlaQUIVlmeF9oqR6BzsLMx98TBejw/edit?usp=sharing
https://forms.gle/s1ErtVcA7fsutm6U9
https://forms.gle/RF9JSiZpMr82Tw1r7

Your Name (first last) SID

Practice Problems

1. Fill in the 5 stages of the RISC-V datapath (abbreviations are fine):

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Stage 5:

2. A key part of the RISC-V base (32-bit) datapath is the register file, which provides the source
operands and destination for most computations.

(a) Draw the conceptual diagram of the register file, labeling the input and output signals
with their bitwidths.

(b) What is the value in register x0?

(c) During which operation is the input clock actually used: read or write?

EECS 151/251A Homework 4 3

Reading

In addition to reviewing the RISC-V ISA and datapath lectures, skim through the RISC-V ISA
spec. In particular, focus on the Introduction, Chapter 2 (RV32I Base Integer Instruction Set),
and the tables on pages 129 and 130.

Problem 1: RISC-V Manual Assembly [4 pts (1 each)]

Manually construct the binary instruction for the following assembly instructions. Submit all of
the following for each instruction:

• The 32-bit binary number for the instruction

• The core instruction format it belongs to

• Delineate the 32 bits into the subfields of the instruction format and label each field with the
opcode/registers/immediate/offset etc. specified by the instruction

Note: we highly encourage you to do this by hand from the ISA spec, but it is possible to assemble
them using RISC-V GCC or venus.

(a) sra x1, x2, x3

(b) andi x1, x2, 100

(c) sh x1, 4(x2)

(d) bne x6, x8, 1024

Solution:
You should have manually assembled these by hand for this homework, but in the future you
can use the RISC-V GCC to do it for you. The compiler is located on the instructional servers at
/home/ff/eecs151/tools-151/riscv-toolchain-fa19/bin, which may already be on your
PATH.

Create a file test.S with contents:

.global _start

.section .text
_start:

sra x1, x2, x3
andi x1, x2, 100
sh x4, 4(x2)
bne x6, x8, 1024

Run the compiler:

Version: 1 - 2020-10-06 08:04:35Z

https://riscv.org/specifications/
https://riscv.org/specifications/
https://venus.cs61c.org/
/home/ff/eecs151/tools-151/riscv-toolchain-fa19/bin

EECS 151/251A Homework 4 4

riscv64-unknown-elf-gcc -c -mabi=ilp32 -march=rv32i -static -mcmodel=medany \
-fvisibility=hidden -nostdlib -nostartfiles test.S -o test.o

Dump the generated assembly:

riscv64-unknown-elf-objdump -Mnumeric -D test.o

test.o: file format elf32-littleriscv

Disassembly of section .text:

00000000 <_start>:
0: 403150b3 sra x1,x2,x3
4: 06417093 andi x1,x2,100
8: 00411223 sh x4,4(x2)
c: 00830463 beq x6,x8,14 <_start+0x14>
10: 0000006f j 10 <_start+0x10>

The answers for the first 3 parts are:

a) sra is an R-type instruction.
0x403150b3 = 0b0100_0000_0011_0001_0101_0000_1011_0011
Delineated: 0100000_00011_00010_101_00001_0110011
0110011 in the opcode field denotes OP
SRA = 101 in the funct3 field ([14:12])
Register x1 is the rd field ([11:7])
Register x2 is the rs1 field ([19:15])
Register x3 is the rs2 field ([24:20])

b) andi is an I-type instruction.
0x06417093 = 0b0000_0110_0100_0001_0111_0000_1001_0011
Delineated: 000001100100_00010_111_00001_0010011
0010011 in the opcode field denotes OP-IMM
andi = 111 in the funct3 field ([14:12])
Register x1 is the rd field ([11:7])
Register x2 is the rs1 field ([19:15])
Immediate 100 is the imm field ([31:20])

c) sh is an S-type instruction.
0x00411223 = 0b0000_0000_0100_0001_0001_0010_0010_0011
Delineated: 0000000_00100_00010_001_00100_0100011
0100011 in the opcode field denotes STORE
sh = 001 in the funct3 field ([14:12]), denoting 16b stores
Register x4 is the rs2 field ([24:20])

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 5

Register x2 is the rs1 field ([19:15])
Offset 4 is the imm field ([11:7])

For the last part, the compiler created a beq instruction with an offset pointing to the line right
after the end of the program instead of 1024. The correct solution can be found by assembling
the instruction with venus:

bne is a B-type instruction.
0x40831063 = 0b0100_0000_1000_0011_0001_0000_0110_0011
Delineated: 0_100000_01000_00110_001_0000_0_1100011
1100011 in the opcode field denotes BRANCH
bne = 001 in the funct3 field ([14:12])
Register x6 is the rs1 field ([19:15])
Register x8 is the rs2 field ([24:20])
Offset 1024 is the imm field ([31:25], [11:6])

Version: 1 - 2020-10-06 08:04:35Z

https://venus.cs61c.org/

EECS 151/251A Homework 4 6

Problem 2: RISC-V Assembly Programs [4 pts (1 each)]

Write down the values of the specified registers after the following programs have run. Show your
work by annotating the what happens/changes after each instruction. Note that some instructions
are pseudo-instructions, such as li for load immediate. Refer to Table 25.2 in the RISC-V spec for
a list of pseudo-instructions and their base implementations.

(a) li x0, 100
li x1, 200
sub x2, x1, x0
addi x2, x2, 100

x0 = , x1 = , x2 =

Solution:
x0 = 0, x1 = 200, x3 = 300
Instruction-by-instruction:
x0 = 0 | x1 = 200 | x2 = 200 | x2 = 300

(b) li x1, 0xdead
li x2, 0xbeef
li x3, 0x128
sb x2, 0(x3)
sra x2, x2, x3
sb x2, 1(x3)
sb x1, 2(x3)
sra x1, x1, x3
sb x1, 3(x3)
lw x4, 0(x3)

x1 = , x2 = , x4 =

Solution:
x1 = 0xde, x2 = 0xbe, x4 = 0xdeadbeef
Instruction-by-instruction:
x1 = 0xdead | x2 = 0xbeef | x3 = 0x128 | dmem @ 0x128 = 0xef | x2 = 0xbe |
dmem @ 0x129 = 0xbe | dmem @ 0x12A = 0xad | x1 = 0xde | dmem @ 0x12B = 0xde
| x4 = 0xdeadbeef

(c) li x1 -1
li x2 1

f1: sll x3 x1 x2
sub x1 x1 x3
addi x2 x2 1
blt x1 x2 f1

x1 = , x2 = , x3 =

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 7

Solution:
x1 = 21, x2 = 4, x3 = 0xFFFFFFE8 (-24)
Instruction-by-instruction:
x1 = -1 | x2 = 1 | x3 = 0xFFFFFFFE (-2) | x1 = 1 | x2 = 2 | branch to f1 |
x3 = 4 | x1 = -3 | x2 = 3 | branch to f1 | x3 = 0xFFFFFFE8 (-24) | x1 = 21
| x2 = 4 | branch not taken

(d) Assume the following instructions start at address 0x0.

li x1, 0
jalr x2, x0, 12
addi x1, x1, 100
jalr x2, x2, 0
addi x1, x1, 100
jalr x2, x2, 0
j more

more: jalr x2, x2, 0
j end

end: nop

x1 = , x2 =

Solution:
x1 = 300, x2 = 32
Instruction-by-instruction:
x1 = 0 | x2 = 8 | x2 = 16 | x1 = 100 | x2 = 16 | x1 = 200 | x2 = 24 | x1 =
300 | x2 = 28 | x2 = 32 | jump to end | nop

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 8

Problem 3: RV64M Multiplication ALU [5 pts (1 per inst.)]

Refer to Chapter 7 ("M" Standard Extension for Integer Multiplication and Division, Version 2.0) in
the RISC-V spec and the corresponding instruction set listing on page 131. Using the template given
here, implement an ALU that supports the subset of the 64-bit "M" extension that performs
multiplication. Don’t worry about any synthesizability/performance issues of your implementation
in this exercise.

Pay attention to which bits are important in each variant of the multiply, as well as the signed-ness
of the inputs to the multiply (*) operator. You may want to make sure you are comfortable with
Verilog signed arithmetic and the concatenation operator first.

`define ALU_MUL 0
`define ALU_MULH 1
`define ALU_MULHSU 2
`define ALU_MULHU 3
`define ALU_MULW 4
module rv64mult_alu(

input [63:0] a,
input [63:0] b,
input [2:0] op, // op is one of the values `define'd above
output [63:0] c,

);

// Your implementation

endmodule

Solution:
In this solution, the behavior is MUL as the default if op is an undefined value. Other imple-
mentations of the default case are allowed. Notes:

• MUL is straightfoward: the * operator will truncate MSBs of the result based on the width
of the result wire/reg.

• MULH requires sign extension of both inputs to a total of 128 bits, followed by a regular
multiply and then discarding of the lower 64 bits. Another correct answer would be a
c_all = signed(a)∗signed(b) where c_all is a 128 bit reg, followed by a c = c_all
»> 64.

• MULSU requires sign extension of only input a but zero padding input b, and a similar
multiplication/truncation.

• MULU requires zero padding of both inputs, and a similar multiplication/truncation.

• MULW is just a 32-bit multiplication of the lower 31 bits of a and b, followed by a sign
extension to 64 bits.

Version: 1 - 2020-10-06 08:04:35Z

https://www.hdlworks.com/hdl_corner/verilog_ref/items/SignedArithmetic.htm
https://verilogcodes.blogspot.com/2015/11/concatenation-operator-in-verilog.html#:~:text=Concatenation%20is%20generally%20used%20for,the%20concatenation%20operator%20in%20Verilog.

EECS 151/251A Homework 4 9

• Alternate solutions may do manual sign extension by 1 bit, assigning the multiplication
to a 128-bit intermediate reg, and then doing the 64 bit shift or bit slicing to get c.

module rv64mult_alu(
input [63:0] a,
input [63:0] b,
input [2:0] op,
output [63:0] c,

);

always @(*) begin
case (op)

`ALU_MULH: c = (($signed({{64{a[63]}}, a}) * $signed({{64{b[63]}}, b})) >>> 64);
`ALU_MULHSU: c = (($signed({{64{a[63]}}, a}) * {64'b0, b}) >> 64);
`ALU_MULHU: c = (({64'b0, a} * {64'b0, b}) >> 64);
`ALU_MULW: c = $signed(a[31:0] * b[31:0]);
default: c = a * b;

endcase
end

endmodule

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 10

Problem 4: Extending RV32I Branching for ReLU [10 pts]

The Rectified Linear Units, or ReLU function is very useful in machine learning. It is the most
popular activation function and is defined as y = max(0, x). Graphically, it looks like this:

Figure 1: ReLU activation function

In RV32I, this function can be implemented with a couple instructions, using a branch. Let’s try
to extend RV32I to do a ReLU in a single instruction by using what exists in the datapath.

(a) (1 pt) Fill in the assembly below needed to do a ReLU in RV32I, using a bge instruction.
Assume register x1 already stores x and we want register x2 to get y.

mv
bge
mv

end: nop

(b) (4 pts) To guide you toward a solution, first complete the Verilog implementation of ALUSel in
the Control Logic for RV32I. For this part, write down the logical expressions for the output
control signals in terms of an instruction’s opcode, funct3, and funct7 bits, as well as the
BrEq and BrLT signals from the branch comparator. You can also simplify the expressions by
comparing the opcode field against the constants in Table 24.1 in the RISC-V ISA manual.
For example: assign sig = (opcode == OP-32) || (opcode == LOAD);.

// The rest of the Control Logic module is not implemented here.
// ALUSel here is a 4-bit output, and should take the constants
// defined below for each type of operation the ALU is to do.
parameter ALU_ADD = 4'b0000;
parameter ALU_SUB = 4'b0001;
parameter ALU_SLT = 4'b0010;
parameter ALU_SLTU = 4'b0011;
parameter ALU_AND = 4'b0100;
parameter ALU_OR = 4'b0101;
parameter ALU_XOR = 4'b0110;
parameter ALU_SLL = 4'b0111;
parameter ALU_SRL = 4'b1000;

Version: 1 - 2020-10-06 08:04:35Z

https://en.wikipedia.org/wiki/Activation_function

EECS 151/251A Homework 4 11

parameter ALU_SRA = 4'b1001;

always @(*) begin
ALUSel = ALU_ADD; // default

// Complete your implementation here

end

(c) (2 pts) We now want to implement ReLU as an R-type instruction. For this problem, the
instruction format would be like relu rd rs1 rs2 such that:

• We must specify register x0 for rs2 so as to check against the value 0 for ReLU. Any
other value for rs2 would give us an invalid result.

• rs1 should be the value of x and rd would be the value of y.

In essence, we want the branch comparator to help us with the ReLU function. Submit the
following:

(i) Refer to table 24.1 and the following description in the ISA spec. How can we extend
our ISA to enable adding our ReLU instruction?

(ii) With the scheme, we do not need to update the datapath. Instead, what do we need to
change?

(d) (2 pts) Now, update your Verilog code from b) to enable your new ReLU instruction.

(e) (1 pt) Could we also implement our new ReLU instruction as an I-type instruction instead?
If so, how would its implementation be different from the R-type version?

Solution:
(a) Here is a solution assuming x is in the x1 register and y is to be in the x2 register.

mv x2 x1
bge x1 x0 8
mv x2 x0

end: nop

An alternate correct solution would be to swap the 2 mv instructions and the registers
for bge.

(b) // omitting parameter declarations
always @(*) begin

ALUSel = ALU_ADD; // default
if (opcode == OP || opcode == OP-IMM) begin

case (funct3)
3'b000: ALUSel = funct7[5] ? ALU_SUB : ALU_ADD;
3'b001: ALUSel = ALU_SLL;
3'b010: ALUSel = ALU_SLT;
3'b011: ALUSel = ALU_SLTU;

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 12

3'b100: ALUSel = ALU_XOR;
3'b101: ALUSel = funct7[5] ? ALU_SRA : ALU_SRL;
3'b110: ALUSel = ALU_OR;
3'b111: ALUSel = ALU_AND;
default: ;

endcase
end

end

(c) We should encode the new ReLU instruction within the opcode custom-0 or custom-1,
as these are reserved for user extensions within RV32I.
The control logic needs to be changed such that when BrLT from the branch comparator
is 0, we take x directly (x1 OR x0), and when it is 1, we take 0 directly (x1 AND x0).
(Optional) It would be more robust to condition this on the branch comparator doing a
signed comparison ((BrLT !BrUn) instead of just BrLT) because an unsigned comparison
makes no sense. This could also take the form of assuming that bit 6 of funct7 is 0 like
other signed branching instructions, since we are conditioning the new logic only on the
new custom opcode.
Depending on implementation, some other control logic outputs (e.g. WBSel) may also
need to be updated to account for the new opcode.

(d) This assumes ReLU is in a new opcode constant CUSTOM-0:

// skipped parameter declarations
always @(*) begin

ALUSel = ALU_ADD; // default
if (opcode == OP || opcode == OP-IMM) begin

// this is all the same as above
end
// this is new
else if (opcode == CUSTOM-0) begin
ALUSel = BrLT ? ALU_AND : ALU_OR;

end
end

(e) Yes. Instead of rs2 being register x0, we would just need to put 0 as the immediate,
set BSel just as we would with the other integer register-immediate instructions, and
implement ALUSel the same way.

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 13

Problem 5: Extending RV32I for BNNs [10 pts]

We want to add another, more complex instruction to this ISA that may help us with certain
neural network applications: a bitwise multiply-and-accumulate (MAC) operation. This operation
can also be considered as a bitwise dot product in linear algebra speak. Here are the specifications:

• Each 32-bit datum in our architecture represents a 32-element long vector of binary values

• Bits translate to binary values as follows: a "0" bit represents the value "-1" and a "1" bit
represents the value "+1"

• The MAC is therefore calculated as follows, shown for a 4-bit vector example for understand-
ing.
Given input binary vectors x = {1,-1,1,-1} = 1010 and y = {-1,1,1,-1} = 0110:
mac(x, y) = (+1 * -1) + (-1 * +1) + (+1 * +1) + (-1 * -1) = 0.

Background: Binary Neural Networks (BNNs) are neural networks with weight and activation
matrices quantized to ±1. This extreme degree of quantization is desired for applications where
data movement must be kept to an absolute minimum because it compresses one dimension of the
weight and activation matrices. Furthermore, BNNs promise to dramatically save computational
resources, because a MAC can use bitwise computations rather than integer multiplication and
addition.

Your task: Implement the algorithm that accomplishes this bitwise MAC, called XNOR-Popcount.
In this algorithm, the bitwise XNOR is taken, followed by a popcount, and finally a scaling adjust-
ment. In pseudocode:

a = xnor(x,y)
b = popcount(a)
c = len(a) // this is known (32)
mac(x,y) = 2 * b - c

The popcount operation here (otherwise known as Hamming weight) is also very useful for other
applications such as communications and cryptography, but is missing from the RISC-V ISA spec.
Due to popular demand, it is currently draft proposed in the "B" or bitmanip extension.

The popcount of a binary number is the sum of all the 1’s in the bitstring. For example, the pop-
count of 10110100 is 4. The naïve method of implementing popcount using an integer instruction
set would be check each bit one-by-one, incrementing a counter if we see a 1. In a C implementation
for 32 bits, it would look like this:

int pop(unsigned x) {
int count = 0;
for (i = 0; i < 32; i++) { // loop through all bits

if ((x & 1) == 1) // mask LSB and check for 1

Version: 1 - 2020-10-06 08:04:35Z

https://software.intel.com/content/www/us/en/develop/articles/binary-neural-networks.html
https://sushscience.wordpress.com/2017/10/01/understanding-binary-neural-networks/
https://en.wikichip.org/wiki/population_count
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf

EECS 151/251A Homework 4 14

count++;
x >>= 1; // right shift by 1

}
return count;

}

Clearly, there are an extremely large number of RV32I instructions needed to implement this. There
is a much faster algorithm using an integer instruction set, as described in Hacker’s Delight:

int pop(unsigned x)
{

x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x >> 8);
x = x + (x >> 16);
return x & 0x0000003F;

}

To accelerate the MAC operation for BNNs, we would like to implement XNOR-Popcount as a
single instruction. To do so, you’ll need to add an accelerator (new ALU). For these questions,
assume that in your new accelerator, you can implement any number of new combinational logic
operations (no matter how complex), and that the input binary vector x is already stored in the
register file.

(a) (3 pts) Fill in the assembly instructions below that are needed to calculate the popcount using
the faster popcount algorithm. The destination registers have been given to you, the original
number is already in register x1, and the result should also be in register x1 at the end:

srli x2
li x3
and x2
sub x1
li x3
and x2
srli x4
and x4
add x1
srli x2
add x1
li x2
and x1
srli x2
add x1
srli x2
add x1
andi x1

Version: 1 - 2020-10-06 08:04:35Z

http://books.google.com/books?id=iBNKMspIlqEC&pg=PA66

EECS 151/251A Homework 4 15

How many RV32I instructions is this?

(b) (2 pts) For this faster popcount, if you could extend RV32I with one fused (i.e. 2+ instructions
combined) I-type instruction to minimize the number of instructions, what logic function
should it implement? How many instructions would it save compared to part a)?

(c) (3 pts) It turns out at the hardware level, we can do a popcount without all this fancy shifting
and masking, and can therefore do an XNOR-Popcount purely combinationally. Explain how
and write the Verilog implementation of this.

(d) (1 pt) Is the algorithm you used in part c) practical, especially as the length of the input
vectors grows (e.g. we put this in a 64-bit ISA instead)? Explain.

(e) (1 pt) Let us now expand this operation to perform a binary MAC on vectors larger than
32 bits on our 32-bit architecture. How would you do this over multiple instructions without
changing the RV32I datapath, control logic, or your new ALU from part d)?

Solution:
(a) srli x2 x1 1

li x3 0x55555555
and x2 x2 x3
sub x1 x1 x2
li x3 0x33333333
and x2 x1 x3
srli x4 x1 2
and x4 x4 x3
add x1 x2 x4
srli x2 x1 4
add x1 x1 x2
li x2 0x0F0F0F0F
and x1 x1 x2
srli x2 x1 8
add x1 x1 x2
srli x2 x1 16
add x1 x1 x2
andi x1 x1 0x0000003F

Trick question! This is actually 21 RV32I instructions because li rd, imm is generally
implemented as:

lui rd, imm_lui
addi rd, x0, imm_add

lui must come before addi because it forces the bottom 12 bits of rd to 0. The imm_add
must be imm[11:0] since lui is unable to set those bits. Then we can calculate what
imm_lui ought to be to get imm correctly loaded.
imm_lui = (imm - sign_ext(imm[11:0]))[31:12]

Version: 1 - 2020-10-06 08:04:35Z

EECS 151/251A Homework 4 16

(b) We should add a fused I-type instruction that does the operation of x = x + (x » imm).
This saves 3 instructions.

(c) Your Verilog module should at least have this snippet:

// skipped module/ports declaration
wire [31:0] a;
wire [5:0] b;
always @(*) begin
a = x ~^ y;
b = 0;
for (i = 0; i < 32; i = i+1) b = b + a[i];
dot = 2 * b - 32;

end

Summation of every single bit in a long chain is also acceptable, but using the for loop
is much more concise.

(d) No, the for loop that is used to generate the popcount results in a large adder tree, which
would be a long path in a synthesized design. The depth grows directly with the XLEN.
In real hardware implementations, popcounts take multiple cycles (like other complex
ops like floating-point multiply, etc.) and also use more advanced networks of half and
full adder cells.

(e) We would break up the MAC over multiple XNOR-Popcount instructions, separated in
between by an add instruction that would increment the running popcount. To address
the cases where the input vectors are not multiples of 32 bits, there are multiple solutions.
An easy way would be to make the unused bits 0’s (hence making -1 * -1 = 1 multiplies),
and then subtract a correction factor from the final result based on the number of filled 0’s.

For your own additional information:
Theoretically, we could modify the datapath and ALU such that the ALU has 3 inputs,
where the 3rd input is also the destination register. However, this is not practical be-
cause register files can’t generally have more than 2 read ports, and it would make the
instruction decoding far more complicated.
An alternative (though not necessarily more efficient and is not covered in this class)
method would be to make our XNOR-Popcount an atomic arithmetic instruction, which
reads the running count from data memory and writes back to it on the same cycle.

Version: 1 - 2020-10-06 08:04:35Z

	RISC-V Manual Assembly [4 pts (1 each)]
	RISC-V Assembly Programs [4 pts (1 each)]
	RV64M Multiplication ALU [5 pts (1 per inst.)]
	Extending RV32I Branching for ReLU [10 pts]
	Extending RV32I for BNNs [10 pts]

