
EECS 151/251A Homework 5

Due Friday, Oct 16th, 2020

Problem 1: Control Logic [12 pts]

In the fabrication of any digital circuit, there may be manufacturing defects. One type of defect
involves a signal being shorted to GND or VDD (stuck-at-zero or stuck-at-one). Consider the
following datapath and control signals, please specify the RISC-V instructions that will no longer
work for the following stuck signals.

(a) (4 pts) BSel is stuck-at-one

Solution:
Any instructions that use rs2 in the ALU won’t work. This includes all R-type instruc-
tions. The explicit list is:
add, slt, sltu, and, or, xor, sll, srl, sub, sra.
Note that branches will still work as the branch computation unit is separate from the
ALU. Also note stores will still work since Reg[rs2] is directly passed to the DMEM.
To get full credit for this question, you should specify the explicit instruction list, or
claim that R-type instructions in general won’t work.
For each instruction not on the list, -0.5pt

EECS 151/251A Homework 5 2

(b) (4 pts) ASel is stuck-at-zero

Solution:
auipc will no longer work. (1pt)
branch (or specifying beq, bne, blt, bge, bltu, bgeu) (2pts) and jal (1pt) address
calculations won’t work.
Note jalr will still work since the new PC is calculated as rs1 + imm.
For each instruction not on the list, -1pt

(c) (4 pts) WBSel[1] is stuck-at-zero

Solution:
jal (2pts), jalr (2pts) won’t work.
For each instruction not on the list, -1pt

EECS 151/251A Homework 5 3

Problem 2: Hazard [10 pts]

Assume we have a 5 stage pipelined processor with the following stages:

1. Instruction fetch (IF)

2. Decode (D)

3. Execute (EX)

4. Memory Access (M)

5. Writeback (WB)

(a) (8 pts) Assume that data forwarding isn’t implemented in this datapath (use stall), and
branch is always not taken (take PC+4). How many cycles will the following assembly take
to execute? Please make a timing table showing the stage of each cycle, which kind(s) of
hazard do you observe? (hint: The column should be: Cycle | IF | D | EX | M | WB. At
the final cycle, nop should be in the last stage)

0x00: li x1, 3
0x04: li x2, 5
0x08: xor x3, x1, x2
0x0c: add x4, x1, x2
0x10: slli x5, x3, 1
0x14: blt x4, x5, 0x08
0x18: addi x1, x4, 4
0x1c: beq x5, x1, 0x08
0x20: addi x1, x4, 4
0x24: nop

EECS 151/251A Homework 5 4

(b) (2 pts) What is the CPI of this process for this block of code?

Solution:
(a) Takes 19 cycles in total (3pts). The table is as below (5pts):
Cycle IF D EX M WB note
1 li - - - -
2 li li - - -
3 xor li li - -
4 add xor li li -
5 add xor - li li Data hazard
6 add xor - - li
7 slli add xor - -
8 blt slli add xor - Data hazard
9 blt slli - add xor
10 addi(18) blt slli - add Data+Ctrl hazard
11 addi(18) blt - slli -
12 addi(18) blt - - slli
13 beq addi(18) blt - -
14 addi(20) beq - blt -
15 beq addi (K) beq(K) - blt Kill addi(20), beq
16 addi(20) beq - - -
17 nop addi(20) beq - -
18 - nop addi(20) beq -
19 - - nop addi(20) beq
20 - - - nop addi(20)
21 - - - - nop

(b) (2pts)
CPI = 21cycles

9instructions
≈ 2.33

EECS 151/251A Homework 5 5

Problem 3: Forwarding [14 pts]

Now we have a typical 5 stage pipeline (instruction fetch (IF) | decode(D) | execute (EX) | memory
access (M) | writeback (WB)) RISC-V processor. You are given the assembly code shown below.

add x1, x2, x3
xor x2, x1, x4

(a) (4 pts) Explain what kind of hazard is present in the code above, and how many extra cycles
are introduced if the processor has no data-forwarding. Assume all state elements in the
processor are positive edge triggered.

Solution:
There is a read-after-write data hazard present (2pts), involving the value written to
the x1 register by the first instruction. We can draw a pipeline diagram to analyze this
situation:

Cycle 1 2 3 4 5 6 7 8
Inst 1 IF D EX M WB
Inst 2 IF D - - EX M WB

Since the result of the first instruction isn’t available to the next instruction until after
it has been written to the regfile (at the end of cycle 5), the second instruction has to
stall until it is available. 2 extra cycles are needed due to the data hazard (2pts).

(b) (4 pts) To improve the performance, forwarding is implemented such that the inputs to the
ALU can be pulled from the memory access stage. Now, how many extra cycles are caused
by the hazard? How would you modify the part of the datapath shown below for this to be
possible? Name any new control signals you have added.

EECS 151/251A Homework 5 6

Solution:
Now the data needed by instruction 2 is available in cycle 4 and can be forwarded imme-
diately.

Cycle 1 2 3 4 5 6 7 8
Inst 1 IF D EX M WB
Inst 2 IF D EX M WB

No extra cycles are caused by this hazard now. (2pts)
We can modify the datapath by routing ALUOutM from the memory access stage to 2
muxes that drive SrcAE and SrcBE. The muxes are controlled by one control signal each
and if the control signal is 1, ALUOutM is forwarded to the respective ALU inputs. We
can call these control signals ALUFwdA and ALUFwdB. (2pts)

(c) (2 pts) Now consider this set of instructions:

lw x1, 0(x2)
add x5, x4, x1

Assuming an asynchronous read data memory, how many cycles will this set of instructions
take to execute? Identify any data hazards.

Solution:

EECS 151/251A Homework 5 7

There is a data hazard concerning register x1 similar to part (a) (1pt). As a result these
instructions will take 8 cycles to execute without any additional forwarding paths (1pt).

(d) (4 pts) If you could add another forwarding path from the output RD of the data memory,
how many cycles will these instructions take to execute? What could be a disadvantage of
forwarding from the output of the data memory versus from the pipeline register clocking RD?

Solution:
We could again reduce the total cycles down to 6 (1pt). However, directly feeding the
output of the data memory to the execute stage will likely yield a long ciritical path which
could un-balance the pipeline and negatively impact the max frequency of operation
(3pts).

EECS 151/251A Homework 5 8

Problem 4: Branch Prediction [14 pts]

We have a 5 stage pipeline (IF | D | EX | M | WB) with all necessary forwarding (i.e. no load/data
hazard). You are given the assembly code shown below.

0x00: addi x1, x0, 0
0x04: addi x5, x0, 0x70
0x08: addi x6, x0, 0x7c
0x0c: lw x2, x5, 4
0x10: andi x3, x2, 1
0x14: add x1, x1, x3
0x18: srli x2, x2, 1
0x1c: bne x2, x0, -12
0x20: addi x5, x5, 4
0x24: bne x5, x6, -24
0x28: nop

The data sent back from a sensor is stored in data memory, as shown below:

Addr Data
... ...
0x74 0x03e007ff
0x78 0xfc003c00
0x7c 0x000ff800
... ...

Consider the following cases:

(a) (5 pts) PC+4 is always taken for branch prediction. How many extra cycles does the assembly
code take?

Solution:
The assembly code counts the 1s from memory 0x74 to 0x7f, and the result should be
35. There are 2 branch instructions:

1 0x1c: This branch will be taken if the current word have not finished (x2 is not all 0).
Considering the content in memory, this instruction will be executed 26+32+20 = 78
times in total: 75 taken, 3 not taken.

2 0x2c: This branch will be taken if not finish. Executed 3 times in total: 2 taken, 1
not taken.

It takes 3 extra cycles if a wrong prediction is made (Branch compare result will be
available at the end of EX. If use 2 for the whole problem, receive 80% credit if the rest is

EECS 151/251A Homework 5 9

correct). For this part, branch is not taken by default, so there will be 3 × (75 + 2) = 231
extra cycles.

(b) (5 pts) Branch is always taken for branch prediction. To make sure the branch address is
available immediately next cycle, how would you modify the datapath? How many extra
cycles does the assembly code take?

Solution:
There will be extra hardware that directly calculates the value of the new PC.
For this part, branch is taken by default, so it will have 3 × (3 + 1) = 12 extra cycles.

(c) (4 pts) Please propose a branch prediction strategy. How would that work in this case?

Solution:
Many solutions will be accepted. For example, based on last choice: there will be 3 ×
(1 + 1 + 1 + 1 + 1) = 15 extra cycles. It does have more cycles comparing to (b), but it
is a more general strategy.

	Control Logic [12 pts]
	Hazard [10 pts]
	Forwarding [14 pts]
	Branch Prediction [14 pts]

