EECS 151/251A Homework 6

Due Friday, Oct $23^{\text {rd }}, 2020$

Problem 1: Complementary CMOS [8 pts]

(a) Write the simplified boolean expression for the function described by the CMOS circuit below. Hint: Writing a truth table with inputs A, B and output Y may make the answer more apparent. [2 pts]

(b) Write the simplified boolean expression for the function described by the CMOS circuit below. [2 pts]

(c) Implement the logic function $Y=\overline{A+B C}$ using a complementary pull-up and pulldown network. [2 pts]
(d) Implement the logic function $Y=\overline{A(B+C)+\bar{B} C}$ using a complementary pull-up and pulldown network. For this question, assume you have \bar{A}, \bar{B}, and \bar{C} available in addition to A, B, and $C .[2 \mathrm{pts}]$

Problem 2: Voltage Transfer Characteristic (VTC) [4 pts]

Using the transistor-as-a-switch model, draw the voltage transfer characteristic for the circuit below. You will eventually recognize this as half of a 6 T CMOS SRAM bitcell. Assume that $\left|V_{t h, p}\right|=$ $V_{t h, n}<V_{D D} / 2$ and that $R_{o n, p}=R_{o n, n}$.

Problem 3: Inverter Delay [3 pts]

By taking advantage of the fact that logic gates take some time to propagate changes in their input, we can build a simple ring oscillator (a circuit that switches back and forth between 0 and 1) from an odd number of inverters, as shown below. Suppose we use 7 inverters to do so.

For this question, we will use the model of a transistor as a resistor and a capacitor. Here is the diagram of an inverter under this model:

(a) Say $R_{e q, n}=R_{e q, p}=5 m \Omega$ and $C_{P}=C_{i n}=2 n F$. What is the propagation delay of an inverter in this design? [2 pts]
(b) At what frequency will the output signal oscillate? Assume Q is not connected to anything outside the ring. [1 pt]
(Note: Our solution here is easy to find because the inverters are connected in a loop. As you will find, this problem becomes more complicated when the chain of inverters is connected to a different circuit.)

