EECS 151/251A Homework 6

Due Friday, Oct 23rd, 2020

Problem 1: Complementary CMOS [8 pts]

(a) Write the simplified boolean expression for the function described by the CMOS circuit below. Hint: Writing a truth table with inputs A, B and output Y may make the answer more apparent. [2 pts]

Solution:Using the PUN: $Y = (\overline{A} + \overline{B}) \cdot (A + B)$
 $= \overline{A}A + \overline{A}B + \overline{B}A + \overline{B}B$
 $= 0 + \overline{A}B + \overline{B}A + 0$
 $= \overline{A}B + \overline{B}A$
 $= A \oplus B$ Using the PDN: $Y = \overline{\overline{A} \cdot \overline{B}} + AB$
 $= \overline{\overline{A} \cdot \overline{B}} \cdot \overline{AB}$
 $= (A + B) \cdot (\overline{A} + \overline{B})$ Which can be simplified as above.

(b) Write the simplified boolean expression for the function described by the CMOS circuit below. [2 pts]

Solution:	
Using the PUN:	
Y	$T = (\overline{A} + \overline{B}\overline{C})\overline{D}$
Using the PDN:	
_	$=\overline{A(B+C)+D}$

(c) Implement the logic function $Y = \overline{A + BC}$ using a complementary pull-up and pulldown network. [2 pts]

Solution:

Draw the PDN using $\overline{Y} = A + BC$. Use De Morgan's Law to draw the PUN: $Y = \overline{A + BC}$ $Y = \overline{A} \cdot \overline{BC}$ $Y = \overline{A} (\overline{B} + \overline{C})$

(d) Implement the logic function $Y = \overline{A(B+C) + \overline{B}C}$ using a complementary pull-up and pulldown network. For this question, assume you have \overline{A} , \overline{B} , and \overline{C} available in addition to A, B, and C. [2 pts]

Solution:

First, simplify the expression (not required).

$$\overline{Y} = A(B+C) + \overline{B}C$$
$$= A(B+C) + 0 + \overline{B}C$$
$$= A(B+C) + \overline{B}B + \overline{B}C$$
$$= A(B+C) + \overline{B}(B+C)$$
$$= (A+\overline{B})(B+C)$$

Then, use this to draw the PDN. To draw the PUN, use De Morgan's Law:

$$Y = \overline{(A + \overline{B})(B + C)}$$
$$= \overline{(A + \overline{B})} + \overline{(B + C)}$$
$$= \overline{A}B + \overline{B}\overline{C}$$

Problem 2: Voltage Transfer Characteristic (VTC) [4 pts]

Using the transistor-as-a-switch model, draw the voltage transfer characteristic for the circuit below. You will eventually recognize this as half of a 6T CMOS SRAM bitcell. Assume that $|V_{th,p}| = V_{th,n} < V_{DD}/2$ and that $R_{on,p} = R_{on,n}$.

Solution:

With the transistor-as-a-switch model, we treat each transistor as having a constant resistance R_{on} while it is on.

The NMOS on the right can be treated as a resistor R_{on} , since its input is V_{DD} .

There are 3 possible situations:

- 1. $0 < V_{in} < V_{th}$: The top transistor is on and the bottom transistor is off. This creates a voltage divider between the top and right transistors, resulting in a V_{out} of $\frac{V_{DD}}{2}$.
- 2. $V_{th} < V_{in} < V_{DD} V_{th}$: All transistors are on, creating a voltage divider with V_{DD} and R_{on} on one end, and GND and $\frac{R_{on}}{2}$ on the other end. This results in a V_{out} of $\frac{V_{DD}}{3}$.
- 3. $V_{DD} V_{th} < V_{in} < V_{DD}$: The bottom and right transistors are on, so they both pass a V_{out} of GND.

Problem 3: Inverter Delay [3 pts]

By taking advantage of the fact that logic gates take some time to propagate changes in their input, we can build a simple ring oscillator (a circuit that switches back and forth between 0 and 1) from an odd number of inverters, as shown below. Suppose we use 7 inverters to do so.

For this question, we will use the model of a transistor as a resistor and a capacitor. Here is the diagram of an inverter under this model:

(a) Say $R_{eq,n} = R_{eq,p} = 5m\Omega$ and $C_P = C_{in} = 2nF$. What is the propagation delay of an inverter in this design? [2 pts]

Solution:

Each inverter's load capacitance, C_L , is equal to the following inverter's input capacitance C_{in} . Assuming each inverter has an ideal VTC (the switches switch at $V_{DD}/2$), the propagation delay is ln(2) times the time constant τ .

$$\tau = R_{eq}(C_P + C_L) = (5 \text{ m}\Omega)(2 \text{ nF} + 2 \text{ nF}) = 20 \text{ ps}$$

 $t_p = ln(2)\tau \approx 0.7(20 \text{ ps}) = 14 \text{ ps}$

(b) At what frequency will the output signal oscillate? Assume Q is not connected to anything outside the ring. [1 pt]

(Note: Our solution here is easy to find because the inverters are connected in a loop. As you will find, this problem becomes more complicated when the chain of inverters is connected to a different circuit.)

Solution:

T, the period of the oscillation, is how long it takes for all 7 inverters to switch from 0 to 1 and back to 0.

$$T = 2 \cdot 7t_p = 14t_p$$

$$f = \frac{1}{T} = \frac{1}{14t_p} \approx \frac{1}{196 \text{ ps}} \approx 5.1 \text{ GHz}$$