EECS 151/251A Homework 6

Due Friday, Oct $23^{\text {rd }}, 2020$

Problem 1: Complementary CMOS [8 pts]

(a) Write the simplified boolean expression for the function described by the CMOS circuit below. Hint: Writing a truth table with inputs A, B and output Y may make the answer more apparent. [2 pts]

Solution:

Using the PUN:

$$
\begin{gathered}
Y=(\bar{A}+\bar{B}) \cdot(A+B) \\
=\bar{A} A+\bar{A} B+\bar{B} A+\bar{B} B \\
=0+\bar{A} B+\bar{B} A+0 \\
=\bar{A} B+\bar{B} A \\
=A \oplus B
\end{gathered}
$$

Using the PDN:

$$
\begin{gathered}
Y=\overline{\bar{A} \cdot \bar{B}+A B} \\
=\overline{\bar{A} \cdot \bar{B}} \cdot \overline{A B} \\
=(A+B) \cdot(\bar{A}+\bar{B})
\end{gathered}
$$

Which can be simplified as above.
(b) Write the simplified boolean expression for the function described by the CMOS circuit below. [2 pts]

Solution:

Using the PUN:

$$
Y=(\bar{A}+\bar{B} \bar{C}) \bar{D}
$$

Using the PDN:

$$
Y=\overline{A(B+C)+D}
$$

(c) Implement the logic function $Y=\overline{A+B C}$ using a complementary pull-up and pulldown network. [2 pts]

Solution:

Draw the PDN using $\bar{Y}=A+B C$. Use De Morgan's Law to draw the PUN:

$$
\begin{gathered}
Y=\overline{A+B C} \\
Y=\bar{A} \cdot \overline{B C} \\
Y=\bar{A}(\bar{B}+\bar{C})
\end{gathered}
$$

(d) Implement the logic function $Y=\overline{A(B+C)+\bar{B} C}$ using a complementary pull-up and pulldown network. For this question, assume you have \bar{A}, \bar{B}, and \bar{C} available in addition to A, B, and C. [2 pts]

Solution:

First, simplify the expression (not required).

$$
\begin{gathered}
\bar{Y}=A(B+C)+\bar{B} C \\
=A(B+C)+0+\bar{B} C \\
=A(B+C)+\bar{B} B+\bar{B} C \\
=A(B+C)+\bar{B}(B+C) \\
=(A+\bar{B})(B+C)
\end{gathered}
$$

Then, use this to draw the PDN. To draw the PUN, use De Morgan's Law:

$$
\begin{gathered}
Y=\overline{(A+\bar{B})(B+C)} \\
=\overline{(A+\bar{B})}+\overline{(B+C)} \\
=\bar{A} B+\bar{B} \bar{C}
\end{gathered}
$$

Problem 2: Voltage Transfer Characteristic (VTC) [4 pts]

Using the transistor-as-a-switch model, draw the voltage transfer characteristic for the circuit below. You will eventually recognize this as half of a 6 T CMOS SRAM bitcell. Assume that $\left|V_{t h, p}\right|=$ $V_{t h, n}<V_{D D} / 2$ and that $R_{o n, p}=R_{o n, n}$.

Solution:

With the transistor-as-a-switch model, we treat each transistor as having a constant resistance $R_{o n}$ while it is on.

The NMOS on the right can be treated as a resistor $R_{o n}$, since its input is $V_{D D}$.
There are 3 possible situations:

1. $0<V_{i n}<V_{t h}$: The top transistor is on and the bottom transistor is off. This creates a voltage divider between the top and right transistors, resulting in a $V_{\text {out }}$ of $\frac{V_{D D}}{2}$.
2. $V_{t h}<V_{i n}<V_{D D}-V_{t h}$: All transistors are on, creating a voltage divider with $V_{D D}$ and $R_{o n}$ on one end, and GND and $\frac{R_{o n}}{2}$ on the other end. This results in a $V_{o u t}$ of $\frac{V_{D D}}{3}$.
3. $V_{D D}-V_{t h}<V_{i n}<V_{D D}$: The bottom and right transistors are on, so they both pass a $V_{\text {out }}$ of GND.

$$
\text { Vout } \frac{V_{00}}{2}
$$

Problem 3: Inverter Delay [3 pts]

By taking advantage of the fact that logic gates take some time to propagate changes in their input, we can build a simple ring oscillator (a circuit that switches back and forth between 0 and 1) from an odd number of inverters, as shown below. Suppose we use 7 inverters to do so.

For this question, we will use the model of a transistor as a resistor and a capacitor. Here is the diagram of an inverter under this model:

(a) Say $R_{e q, n}=R_{\text {eq, } p}=5 m \Omega$ and $C_{P}=C_{i n}=2 n F$. What is the propagation delay of an inverter in this design? [2 pts]

Solution:

Each inverter's load capacitance, C_{L}, is equal to the following inverter's input capacitance $C_{i n}$. Assuming each inverter has an ideal VTC (the switches switch at $V_{D D} / 2$), the propagation delay is $\ln (2)$ times the time constant τ.

$$
\begin{gathered}
\tau=R_{e q}\left(C_{P}+C_{L}\right)=(5 \mathrm{~m} \Omega)(2 \mathrm{nF}+2 \mathrm{nF})=20 \mathrm{ps} \\
t_{p}=\ln (2) \tau \approx 0.7(20 \mathrm{ps})=14 \mathrm{ps}
\end{gathered}
$$

(b) At what frequency will the output signal oscillate? Assume Q is not connected to anything outside the ring. [1 pt]
(Note: Our solution here is easy to find because the inverters are connected in a loop. As you will find, this problem becomes more complicated when the chain of inverters is connected to a different circuit.)

Solution:

T, the period of the oscillation, is how long it takes for all 7 inverters to switch from 0 to 1 and back to 0 .

$$
\begin{gathered}
T=2 \cdot 7 t_{p}=14 t_{p} \\
f=\frac{1}{T}=\frac{1}{14 t_{p}} \approx \frac{1}{196 \mathrm{ps}} \approx 5.1 \mathrm{GHz}
\end{gathered}
$$

