EECS 151/251A Homework 9

Due Friday, Nov $20^{\text {th }}, 2020$

Problem 1: Adders

a) Draw the block diagram of an 8 -bit ripple carry adder and an 8 -bit carry-lookahead adder. For each, derive the critical path in terms of the following constants. Use only 2 -input gates. Include the final carry-out bit.
$t_{M U X}=6 p s$
$t_{O R}=5 p s$
$t_{A N D}=4 p s$
$t_{X O R}=6 p s$
b) Now derive, generally, the critical path and area for an N-bit ripple-carry adder and an N-bit carry-lookahead adder. It is okay to make approximations for cases where \sqrt{N} or $\log _{2}(N)$ are not integers. Use only 2 -input gates and include the final carry-out bit.

Problem 2: Tree Adders

The goal of this problem is to design a 10-bit Kogge-Stone adder optimized for delay:
a) Design the following logic blocks at a gate level. You may draw the gates or write the Boolean functions. Use the given inputs and outputs as hints.

Figure 1: Building Blocks for Kogge-Stone Adder
b) Using the logic blocks you designed in part (a), design a 10-bit logarithmic adder with a carry
input and a carry output. Use a radix-2 Kogge-Stone implementation. Highlight the critical path of your design? Give a block-level estimate, assuming that more complex blocks have more delay.

Problem 3: Multipliers

a) Draw a 5×5 Carry-Save multiplier and compute the critical path using $t_{\text {carry }}, t_{\text {sum }}$ and $t_{\text {and }}$.
b) Draw a wallace tree for a 5×5 multiplier using Full Adder and Half Adder cells. What is the critical path?

Problem 4: Latches \& Flip-flops

Consider the latch design shown below. You may assume that the inverters are symmetrical with input capacitance C , self-loading capacitance also C and equivalent driving resistance R . The transmission gate is sized to have an equivalent resistance R and parasitic capacitance C on each side.

Figure 2: Dynamic Latch
a) Calculate the Clk-Q and D-Q delays as a function of R and C of this latch. In each case, show the equivalent RC circuit and explain.
b) What is the approximate setup time for this latch? Explain your answer.

Figure 3: flip-flop
c) We build a flip-flop(figure 3) with two dynamic latches. Is the flip-flop positive-edge triggered or negative-edge triggered?

