
EECS 151/251A Homework 9

Due Friday, Nov 20th, 2020

Problem 1: Adders

a) Draw the block diagram of an 8-bit ripple carry adder and an 8-bit carry-lookahead adder. For
each, derive the critical path in terms of the following constants. Use only 2-input gates. Include
the final carry-out bit.

tMUX = 6ps
tOR = 5ps
tAND = 4ps
tXOR = 6ps

Solution:
Note: Your answers may be slightly different if you chose a different full adder topology.
Ripple Carry:



EECS 151/251A Homework 9 2

FA

AB

Cout

S

Cin

AB Cin

Cout S

FA FA

critical path

A[0]B[0] A[1]B[1]

S[0] S[1]

CoutCin FA

A[2]B[2]

S[2]

FA

A[3]B[3]

S[3]

FA

A[4]B[4]

S[4]

FA

A[5]B[5]

S[5]

FA

A[6]B[6]

S[6]

FA

A[7]B[7]

S[7]

tripple−carry = tXOR+tAND+tOR+(8−1)·(tAND+tOR) = 6ps+4ps+5ps+7·(4ps+5ps) = 78ps



EECS 151/251A Homework 9 3

Carry-Lookahead:

FA FA+C FA FA+C

FA PG+C

PG

FA FA+C FA FA+C

PG PG+C

PG+C

PG+C

FA

ABS

Cin

G P

AB Cin

G P S

p1p0

P G

g0 g1

PG

p0g0 g1 p1

G P

Cout

P GCin

+C

PG

CinCout

critical path

Cout

Cin

A[1]B[1]S[1] A[0]B[0]S[0]A[3]B[3]S[3] A[2]B[2]S[2]A[5]B[5]S[5] A[4]B[4]S[4]A[7]B[7]S[7] A[6]B[6]S[6]

PG
PGFA

tcarry−lookahead = 6ps + 2 · (4ps + 5ps) + 5ps + 2 · (4ps + 5ps) + 6ps = 53ps



EECS 151/251A Homework 9 4

b) Now derive, generally, the critical path for an N-bit ripple-carry adder and an N-bit carry-
lookahead adder. It is okay to make approximations for cases where

√
N or log2(N) are not

integers. Use only 2-input gates and include the final carry-out bit.

Solution:

tripple−carry = tXOR + tAND + tOR + (N − 1) · (tAND + tOR)

tcarry−lookahead = tXOR+(
⌈
log2(N)

⌉
−1)·(tAND+tOR)+tOR+(

⌈
log2(N)

⌉
−1)·(tAND+tOR)+tXOR

Problem 2: Tree Adders

The goal of this problem is to design a 10-bit Kogge-Stone adder optimized for delay:

a) Design the following logic blocks at a gate level. You may draw the gates or write the Boolean
functions. Use the given inputs and outputs as hints.

A(i) B(i)

G(i) P(i)

G(j), P(j)
G(i), P(i)

G(j:i), P(j:i)

G(j), P(j)
G(i)

G(j:i)

G(i:0) P(i)

S(i)

G(i-1:0)

Figure 1: Building Blocks for Kogge-Stone Adder

Solution:
Black square (Modified FA): Gi = AiBi, Pi = Ai ⊕Bi

Black circle (Processing): Gj:i = Gj + PjGi, Pj:i = PjPi

White circle (Buffer): Gj:i = Gj + PjGi

White square (Simplified FA): Si = Pi ⊕Gi−1:0

b) Using the logic blocks you designed in part (a), design a 10-bit logarithmic adder with a carry
input and a carry output. Use a radix-2 Kogge-Stone implementation. Highlight the critical path
of your design? Give a block-level estimate, assuming that more complex blocks have more delay.



EECS 151/251A Homework 9 5

Solution:
The first stage is the black boxes: here we generate the bit propagate (Pi) and generate (Gi)
signals that will be used by the tree. For the actual tree, the Kogge-Stone implementation first
groups the (Pi, Gi) in groups of 2, therefore generating (P1:0, G1:0), (P2:1, G2:1) etc. Then those
signals are grouped again in groups of 2 to form (P3:0, G3:0), (P4:1, G4:1) etc.

The key here is that you need to incorporate the Cin signal into the tree. Remember that in
order to get a sum bit you need Si = Pi ⊕ Ci = Pi ⊕ Gi−1:0. Therefore for S0 you need P0
and Cin, for S1 you need P1 and G0 + P0Cin etc. So we add the white circles to generate the
carries needed for the final sum, including the Cin.

A0B0A1B1A2B2A3B3A4B4A5B5A6B6A7B7A8B8A9B9A10B10A11B11 Cin

S0S1S2S3S4S5S6S7S8S9S10Cout

P0P1P2P3P4P5P6P7P8P9P10

S11

P11

Cout

The critical path is shown on the tree (one example - there are multiple critical paths). In this
case, a block-level estimate of the critical path is: td = tblacksquare + 3∗ tblackcircle + twhitecircle +
twhitesquare.

Problem 3: Multipliers

a) Draw a 5 x 5 Carry-Save multiplier and compute the critical path using tcarry, tsum and tand.

Solution:
Following the multiplier structure on lecture 20 slide 23, we have the carry-save multiplier
below, with the critical path marked in red.
tcritical = tand + tHA,sum + 7tF A,carry + tHA,carry



EECS 151/251A Homework 9 6

We can make the carry-save multiplier more compact by removing the HAs that take 0 as an
input.
tcritical = tand + 2tHA,carry + 6tF A,carry



EECS 151/251A Homework 9 7

b) Draw a wallace tree for a 5 x 5 multiplier using Full Adder and Half Adder cells. What is the
critical path?

Solution:
Showing the steps for the dot diagram:

Figure 2: Original organization of partial products. Note that each dot represents a partial
product.

Figure 3: We rearrange the partial products in order to make grouping easier.

Figure 4: The circles show the first two groups, i.e. the first stage of the tree. We have two
groups of two dots each and no carries so far, so we need two half adders for the first stage.
After the first stage evaluates, the generated carries will pass to the left, and appear as dots
on the next dot diagram.



EECS 151/251A Homework 9 8

Figure 5: Now we can group the dots for the second stage, including the carries generated
before. For every group of 3 we will use a FA, and we will use a HA for the group of 2. Again,
the generated carries from each column will appear as a dot on the left column in the next
diagram.

Figure 6: We keep grouping in a similar manner.

Figure 7: This is the final stage. Note that in this stage we will have a carry propagate-adder.
This means that only the right-most adder will be a half adder, and all the others will be full
adders (adding the two dots, plus the carry-out of the previous stage).



EECS 151/251A Homework 9 9

HA

HA

HAHA

FAFA FA FA

HAFAFA FA FA

FAFA FA FA FAFA FA

Figure 8: Showing this using Full Adders and Half Adders

Note that you can use a fast (carry-bypass, carry-select, etc.) type of adder for the last stage
instead of the ripple-carry.

The critical path for the above diagram is shown below, and the delay is td = tHA + 7 ∗ tF A.
Note that there are different implementations for this problem, so if you used e.g. a fast adder
in the final stage, your critical path may be shorter.

HA

HA

HAHA

FAFA FA FA

HAFAFA FA FA

FAFA FA FA FAFA FA

Figure 9: The critical path

Problem 4: Latches & Flip-flops

Consider the latch design shown below. You may assume that the inverters are symmetrical with
input capacitance C, self-loading capacitance also C and equivalent driving resistance R. The trans-
mission gate is sized to have an equivalent resistance R and parasitic capacitance C on each side.



EECS 151/251A Homework 9 10

Figure 10: Dynamic Latch

a) Calculate the Clk-Q and D-Q delays as a function of R and C of this latch. In each case, show
the equivalent RC circuit and explain.

Solution:

Figure 11: Clk-Q RC model

tclk−q = ln(2)(2R · 2C + R · 2C) = 6 ln(2)RC



EECS 151/251A Homework 9 11

Figure 12: D-Q RC model

td−q = ln(2)(R · 4C + R · 2C + R · 2C) = 8 ln(2)RC

b) What is the approximate setup time for this latch? Explain your answer.

Solution:
Before the clock goes low, we want the data to have settled at the input of the second inverter.

tsetup ≈ ln(2)(R · 4C + R · C) = 6 ln(2)RC

Figure 13: flip-flop

c) We build a flip-flop(figure 13) with two dynamic latches. Is the flip-flop positive-edge triggered
or negative-edge triggered?

Solution:
The flip-flop is positive-edge triggered.


