Agenda

- SRAMs
 - Architecture
 - 6T SRAM Read
 - 6T SRAM Write
 - Multi-Voltage SRAM
- Memory decoding
 - Design example
SRAMs
SRAM Architecture

- **Grid of SRAM bitcells:**
 - width = word size
 - height = # of words
- **Bitlines** (vertical) are shared across cells in a column
 - Long wires with a large capacitive load (drains of access transistors, read/write circuits)
- **Wordlines** (horizontal) are shared across cells in a row
 - Also long with large capacitive load (gates of access transistors)
- **Peripheral circuitry** (bitline drivers, sense amp, decoders)
 - Need to reduce the total number of pins, $N+M$ address lines for 2^{N+M}
 - Ex: if $N+M=20$ --> $2^{20} = 1$ Mb
The 6T SRAM Cell

- Inverters (PL NL and PR NR)
 - in positive feedback form the memory element (like a latch!)
- AXL and AXR are the access transistors
 - Allow the bitlines to access the memory nodes (Q, Qbar) when WL = 1
- Only 1 WL in an SRAM array is active at a time
 - Addresses an entire row of SRAM cells
- Bitlines are controlled differently for read and write
6T SRAM Cell: 3 Modes of Operation

Write

Retention

Read
SRAM Read Operation

- Procedure:
 - Precharge BL and BLbar to VDD
 - Raise WL
 - Sense dip on one bitline with sense amp
 - Lower WL
 - Discharge bitlines
SRAM Read Stability

- Read stability = reading doesn’t corrupt the value stored in Q and Qbar
 a. The access transistor shouldn’t overpower the node storing a ’0’ and flip its state
 b. Sizing: make the latch NMOS stronger than the access transistor = \(W_n > W_{\text{access}} \)

Equivalent Circuit

Read SNM
SRAM Write Operation

- Procedure:
 - Drive BL and BLbar with data to write
 - Raise WL
 - Wait some amount of time (write time)
 - Lower WL
 - Discharge bitlines
SRAM Write

- Write-ability = the cell’s memory value can be changed
 a. Access transistor must overpower latch
 b. Assuming the cell is read stable ($W_n > W_{\text{access}}$), the node with ‘0’ can’t be overpowered => so we must overpower PMOS ($W_{\text{access}} > W_p$) and override the ‘1’ node

![SRAM Write Diagram](image)
Conflicts between read and write

Size 6T the SRAM cell for optimized read and write operation separately:

- Small
- Large

Read optimized

Write optimized
Multi-Voltage SRAM

You have 3 high voltage levels to choose: 0.9V, 1.0V(ref), 1.1V;
3 low voltages: -0.1V, 0V(ref), 0.1V
Which voltage is preferred?

<table>
<thead>
<tr>
<th></th>
<th>Readability</th>
<th>Read Stability</th>
<th>Writability</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Memory Decoders
2-Stage Decoding

- Problem: each distinct address => 1 WL
 - Binary-to-thermometer conversion!
 - Naive method: each WL has its own NAND + inverter tree (a lot of load & logic!)
- 2-stage decoding: predecoders and final decoders
 - Decode some bits first, then the rest (MSB/LSB doesn’t matter)
 - Larger predecode is better (this is just a path delay w/ branching problem)