EECS 151/251A
Discussion 8

Daniel Grubb 10/19, 10/20, 10/25
Administrivia

- Lab 6 due Friday 10/22
 - Cutoff for checkoffs and submissions is the end of next week’s lab sessions
- Project starts this week
 - Do your best to finish up labs and don’t procrastinate!
- Homework 6 due Friday 10/22
- Midterm 1 grades release
 - Regrades due Friday 10/22
- Midterm 2 on the horizon (tentatively November 4th)
- What are you having trouble with? Feedback?
Agenda

● Topics
 ○ Inverter delay and sizing
 ○ Logical effort
 ○ Path effort
 ○ Elmore delay

● How familiar/comfortable are you with:
 ○ transistor switch model?
 ○ inverter delay?
 ○ inverter delay optimization?
 ○ logical effort?
 ○ parasitic delay?
 ○ path effort/optimization?
A Note on Notation and Values

- **PMOS / NMOS ratios**
 - Old technologies/textbooks give 2:1, this class generally uses 1:1
- **Ratio of Cd to Cg = \(\gamma \) (gamma) = 1**
 - Set by process technology
 - \~1.2 in recent processes, but still keep it 1
- **Logical effort**
 - LE or \(g \) both used
- **Fanout or electrical effort**
 - \(F \) for total fanout
 - \(f \) for stage fanout
 - \(h \) also used
Inverter RC Delay Model

High-to-low

\[V_{in} \]

\[R_{eq,p} \]

\[V_{DD} \]

\[C_p + C_L \]

\[\text{Out} \]

\[V_{out} = V_{DD} e^{-\frac{t}{\tau}} \]

\[V_{DD}/2 \]

\[0 \]

\[t_p \]

\[t_{p,HL} = (\ln2)\tau = 0.7 \, R_{eq,p}(C_p + C_L) \]

\[\tau = R_{eq,n}(C_p + C_L) \]
Inverter Delay

What if we make the inverter bigger?

\[
t_p = 0.69 \left(\frac{R_N}{W} \right) (3W \gamma C_G) = 0.69 (3\gamma) R_N C_G
\]

Intrinsic inverter delay
What if we make the inverter bigger?
Inverter Delay

- Add a load capacitance now
- Two components
 - Intrinsic delay
 - Fanout, \(f = \frac{C_L}{C_{in}} \)
- FO4 delay: how many unit delays?
 - Why is this a useful quantity?

\[
t_p = 0.69 \left(\frac{R_N}{W} \right) (C_{int} + C_L)
= 0.69 \left(\frac{R_N}{W} \right) (3W \gamma C_G + C_L)
= 0.69(3C_G R_N)(\gamma + \frac{C_L}{C_{in}})
= t_{inv}(\gamma + \frac{C_L}{C_{in}}) = t_0(\gamma + f)
\]
Inverter Delay Scratch Area
Inverter Sizing Thought Experiment

- Say we just have 1 inverter driving a load capacitance
 - We want to minimize delay
 - We can size it anyway we want
 - How should we size it?
- Be careful with this solution!

\[t_{inv} (\gamma + \frac{C_L}{C_{in}}) = t_0 (\gamma + f) \]

\(C_L = C_{in} \) (next gate)
Inverter Chain Sizing

- **Goal:** minimize the delay of the path
 - Constrain the size of the first inverter + load capacitance in each case
 - What’s a first pass solution?
- **(1) Size a chain given N inverters**
 - Key result: size stages to have identical fanout (minimize the total chain delay expression)
 - What does this say about each stage’s delay?
 - Find f: $f^N=F=C_L/C_{in,1}$
 - Start from beginning or end of chain
- **(2) Determine optimal N and size the chain**
 - Assume fanout, $f=4$ (from graph)
 - Find number of stages, N (integer): ?
 - Same steps as (1)

$$C_{in,j} = \frac{C_{in,j+1}}{C_{in,j}}$$

$$t_p = N t_{inv} \left(\gamma + \sqrt[4]{F} \right), \quad F = \frac{C_L}{C_{in}}$$

![Diagram of inverter chain with labels](image)
Inverter Chain Sizing Examples

- Chain of 3 with load cap of 64:
 - What if we add a capacitance in the middle?

- Load cap. of 1024, give N and sizings:
 - What if non-integer?
Logical Effort and Parasitic Delay

- How much worse is a gate at driving a load capacitance than an inverter with the same input capacitance? (other ways to look at it)
 - Looks like an inverter, but the fanout seems larger
 - Easy way: size gate to deliver same as inverter current, take cap. Ratio
- \(\text{LE} = \frac{R_{eq,\text{gate}} C_{in,\text{gate}}}{R_{eq,\text{inv}} C_{in,\text{inv}}} \)
- Parasitic delay: delay of gate driving no load (set by internal cap.)
 - Find gate RC delay, then extract \(t_{inv} \) term; ratio of internal cap to inverter

![Effective Fanout (EF)](image)
Logical Effort/Parasitic Delay Examples

- Also, consider if the PMOS/NMOS resistances are different than nominal?
Path Delay

- How do we minimize delay more generally?
 - Delay = \(t_{\text{inv}} \Sigma (p_i + \text{LE}_i \cdot f_i) \)
- Path fanout: \(F = \frac{C_L}{C_{\text{in}}} \)
- Path LE: \(G = g_1 g_2 ... g_N \)
- Branching effort
- Use similar result to inverter chain
 - Best EF is still around 4
- Design process:
 - Calculate Path Effort: \(\text{PE} = GFB \)
 - Estimate best number of stages: \(N = \log_4 F \)
 - Calculate Effective Fanout per stage: \(\text{EF} = \text{PE}^{(1/N)} \)
 - Size the gates from beginning or end of chain
- Can always add inverters to the end of the chain
Path Delay Scratch Area
Path Delay Example

- Remember, $EF_i = LE_i \cdot f_i = LE_i \cdot \frac{C_{L,i}}{C_{in,i}}$
Elmore Delay

- Approximate RC time constant of a tree network
- R’s and C’s include both transistors/parasitics and wires
 - Wire π model (where does the R and C come from?)
- Can think of it as:
 - $\sum C_i \times ($sum or R’s charging C_i)$]
 - $\sum R_i \times ($sum of C’s that R_i charges$)$

![Diagram of Elmore Delay network](image)

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i \text{-to-source}} C_i$$

$$= R_1 C_1 + (R_1 + R_2) C_2 + \ldots + (R_1 + R_2 + \ldots + R_N) C_N$$
Elmore Delay Examples

- What information do we need?
- Draw the equivalent model
- Calculate delay to outputs