1 Complementary CMOS

Choose the simplified boolean expression for the function described by the CMOS circuit below.

\[(a) \]

A) \((A + B)(C + D)\)
B) \((AB + CD)\)
C) \((AC + DB)\)
D) \((A + C)(D + B)\)

Solution:

A

\[(b) \]

A) \((C + AB)\overline{D}\)
B) \(C(A + B) + \overline{D}\)
C) \(\overline{C(A + B)} + D\)
D) \((C + AB)\overline{D}\)

Solution:
B

(e)

A) \(A(B + C) + DE\)
B) \((D + E)(\overline{A} + \overline{BC})\)
C) \((\overline{D} + E)(A + BC)\)
D) \((\overline{A}(B + \overline{C}) + DE)\)

Solution:
A
2 XOR

(a) Below is a CMOS implementation of a 3-input XOR gate. Complete the circuit by filling in the signal name in the boxes.

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
A) & A & B & C & \overline{B} & \overline{C} & B \\
B) & A & B & \overline{C} & \overline{B} & C & B \\
C) & A & B & C & B & \overline{C} & \overline{B} \\
D) & A & B & \overline{C} & B & C & \overline{B} \\
\end{array}
\]

Solution:

(b) Is the gate shown above a complementary CMOS gate?

Solution:
YES. The pull down and pull up network are not complementary. But this gate has self-duality
\(f(x_1, x_2, ...) = \overline{f(\overline{x_1}, \overline{x_2}, ...)} \). So it operates as if it’s a complementary gate. For all possible
inputs (besides the during the transition) the output is a low-impedance node. And it has one
and only one path connect to one of the supplies).

(c) Below is a passgate logic implementation of a 3 input XOR gate. Choose the signals that
connect to the second stage NMOS gates.

\[
\begin{array}{c}
A) & C & \overline{C} \\
B) & \overline{C} & C \\
C) & C & C \\
D) & \overline{C} & \overline{C} \\
\end{array}
\]

Solution:
B
3 Voltage Transfer Characteristic (VTC)

Using the transistor-as-a-switch model, write transition points in the voltage transfer characteristic for the circuit below. You will eventually recognize this as half of a 6T CMOS SRAM bit-cell. Assume that $|V_{th,p}| = V_{th,n} = V_{DD}/4$ and that $R_{on,p} = R_{on,n}$. For example, if the transition point is $(1/2V_{dd}, 1V_{dd})$, write $1/2$, 1 in the boxes. If there is only one or two transition points in the middle of the VTC, write 0, 0 in the boxes.

![Diagram of the circuit](image)

Solution:

- $(1/4, 1)$
- $(3/4, 2/3)$
- $(1, 1/2)$

There is no ’transition’ at the third transition point (y doesn’t drop to zero). $X = V_{dd}$ because the input range is $[0, V_{dd}]$.