Berkeley engineering students pull off novel chip design in a single semester (Berkeley Engineer, June 17, 2021)

In what could have important implications for engineering education as well as the field of chip design, a class of Berkeley Engineering students has successfully completed the design process — or “tape-out” — for a novel chip that will be manufactured this summer. As part of this spring’s Advanced Topics in Circuit Design course, 19 students with no prior experience in chip design went from basic introductions to tape-out by the end of a four-month period.
Review

• Binary division is a slow, iterative process
• Non-restoring division speeds it up
• SRT divider, higher radix, redundant number representation
• Timing analysis for early and late signal arrivals
• Flip-flop-based pipelines are a lot easier to analyze than latch-based ones
• Latches are based on positive feedback
Latches
Writing into a Static Latch

Use the clock as a control signal (to break the positive feedback), that distinguishes between the transparent and opaque states.

Converting into a MUX

Forcing the state (functionality depends on sizing)
Tri-State Inverter

- Out is Z when $Clk = 0$

- Latch
Clk-Q Delay

Diagram of Clk-Q Delay.
Setup and Hold Times

\[t_{D_2C} \]

\[t_{Su} \]

\[t_{H} \]
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Data \rightarrow Clock \rightarrow Setup-1 Time $t=0$

Clock-Q Delay

Clk-Q \rightarrow Setup-1 Time $t=0$

Nikolić Fall 2021
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Data $T_{Setup-1}$ Clock $t=0$
Setup-Hold Time Illustrations

Circuit before clock arrival (Setup-1 case)

Data

Clock

\[T_{Setup-1} \]

Time

\[t=0 \]
Hold-1 case

Clock $T_{\text{Hold-1}}$ Data

D_1, S_M, Q_M
Setup-Hold Time Illustrations

Hold-1 case

![Diagram of hold-1 case with clock, data, setup time, and hold time annotations]
Setup-Hold Time Illustrations

Hold-1 case

Data

Clock

$t=0$

$T_{\text{Hold-1}}$

$T_{\text{Clk-Q}}$

Q_M

D_1

S_M

CP

CN

$TG1$

$Inv1$

$Inv2$

Time

Time
Setup-Hold Time Illustrations

Hold-1 case

![Diagram showing setup-hold time illustrations for a latch]

Clock

Data

Time

T_{Hold-1}

D

Inv1

D_1

CN

TG1

S_M

Inv2

Q_M

Clk-Q Delay

T_{Clk-Q}

Time

Nikolić Fall 2021

EECS151 L22 LATCHES, FLIP-FLOPS
Administrivia

• Midterm 2 scores released
 • Final can clobber either midterm!

• Homework 9 posted on Friday, due 11/15
 • One more homework before Thanksgiving

• Project checkpoints #2 this week

• Thursday is a holiday (Veterans’ Day)
The ‘Tapeout’ Class

- EE194/290C, Spring’21 Pister, Nikolic, Niknejad

- Spring’22 class will use Intel 16
 - 2mm x 2mm
Flip-Flops
Types of Flip-Flops

Latch Pair
(Master-Slave)

Pulse-Triggered Latch
Transmission Gate Flip-Flop

- Two back-to-back latches

![Transmission Gate Flip-Flop Diagram]
Aside: Inverter Fork

• Often found in flip-flops: equalize C_k, C_{kb} delays
 • Logical effort $= ?$

![Diagram of inverter fork](Image)
Clk-Q, Setup and Hold Times
Set, Reset

- Set and reset can be synchronous or asynchronous
- Always watch for additional timing paths!
Flip-Flop Timing Characterization

• Combinational logic delay is a function of output load and input slope

• Sequential timing (flip-flop):
 • $t_{\text{clk-q}}$ is function of output load and clock rise time
 • t_{Su}, t_{H} are functions of D and Clk rise/fall times
Registers, Register files

- Register is often built out of flip-flops

- Register file can be built out of registers
 - Ok for small register files
 - Large register files are generally built with latches and custom designed (like memory arrays)
SRAM
Random Access Memory Architecture

• Conceptual: Linear array of addresses
 • Each box holds some data
 • Not practical to physically realize
 – millions of 32b/64b words

• Create a 2-D array
 • Decode Row and Column address to get data

Row

Column

0x000…0

0xFFF…F
Basic Memory Array

• Core
 • Wordlines to access rows
 • Bitlines to access columns
 • Data multiplexed onto columns

• Decoders
 • Addresses are binary
 • Row/column MUXes are ‘one-hot’ - only one is active at a time
Basic Static Memory Element

- If D is high, D will be driven low
 - Which makes D stay high

- Positive feedback
- Same principle as in latches
Positive Feedback: Bi-Stability

• As in latches

![Diagram showing positive feedback bi-stability](image)
Writing into a Cross-Coupled Pair

- This is a 5T SRAM cell
 - Access transistor must be able to overpower the feedback; therefore must be large
 - Easier to write a 0, harder to write 1
- Can implement as a transmission gate as well; single-ended 6T cell
- There is a better solution...
SRAM Cell

Since it is easier to write a 0 through NMOS, write only 0s, but on opposite sides!
When reading, measure the difference
6-transistor CMOS SRAM Cell

- Wordline (WL) enables read/write access for a row
- Data is written/read differentially through shared BL, BL̅
Review

• Latches are based on positive feedback
• Clk-Q delay calculated similarly to combinational logic
• Setup, hold defined as D-Clk times that correspond to Clk-Q delay increases
• Flip-flop is typically a latch pair
• Dense memories are built as arrays of memory elements
 • SRAM is a static memory