Problem 1: Dennard Scaling

Assuming perfect Dennard Scaling. Imagine a processor that runs at 5MHz & 1A and dissipates 5W.

(a) What would the power and performance be in the next technology node if transistors are 1.25x smaller? Remember units!

(b) How would power density change in the new technology node? Why?

Solution:

(a) $\kappa = 1.25$

New power $\dot{P} = P \frac{1}{\kappa^2} = 5 \frac{1}{1.25^2} = 3.2$ W

New capacitance $\dot{C} = C \frac{1}{\kappa}$ and new voltage $\hat{V} = V \frac{1}{\kappa}$

We know that $P = \frac{1}{2} CV^2 f$ and so:

$\dot{P} = P \frac{1}{\kappa^2} = \frac{1}{2} CV \frac{1}{\kappa^2}$

$= \frac{1}{2} \kappa \dot{C} \kappa^2 \hat{V}^2 f \frac{1}{\kappa^2}$

$= \frac{1}{2} \dot{C} \hat{V}^2 (\kappa f)$

Thus new frequency $\dot{f} = \kappa f = 1.25 \cdot 5 = 6.25 = 6.25$ MHz

(b) Power density is $\frac{VI}{A}$

We know that new voltage $\hat{V} = V \frac{1}{\kappa}$, new current $\dot{I} = I \frac{1}{\kappa}$, new area $\dot{A} = A \frac{1}{\kappa^2}$

New power density is $\frac{\hat{V} \dot{I}}{\dot{A}} = \frac{V \frac{1}{\kappa} I \frac{1}{\kappa}} {A \frac{1}{\kappa^2}} = \frac{VI}{A}$

Problem 2: Simplifying Circuits

![Diagram of electrical circuit](image)
(a) Write out the full truth table for the circuit above.

(b) By inspecting the truth table drawn in part (a), draw a simplified circuit with a minimum number of logic gates

Solution:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Circuit

Problem 3: Verilog

For each example, identify the error in the Verilog code and suggest a fix. You don’t have to rewrite the entire Verilog unless you think that’s the most succinct & clear way to answer.
(a) module example_one(
 input [1:0] a,
 input b, c,
 output x
);
 always @(*) begin
 case (a)
 2'b00 : x = b;
 2'b01 : x = c;
 2'b11 : x = b & c;
 2'b10 : x = b | c;
 endcase
 end
endmodule

Solution:
output x should be reg x. x is being assigned within an always block.

(b) module example_two(
 input a, b, c,
 output reg [1:0] x
);
 always @(*) begin
 if (a & b & c) begin
 x = 3;
 end
 else if (a & b) begin
 x = 2;
 end
 else if (c) begin
 x = 1;
 end
 end
endmodule

Solution:
Include an else case to catch all other cases or exhaust all 8 cases possible with a, b, and c. Don’t want to accidentally create a latch.

(c) module example_three(
 input [1:0] a,
 input toggle, sel,
 output reg x
);
 always @(toggle) begin
 if (sel) begin

Solution:

always @(toggle) should be either always @(*) or always @(toggle, sel, a) or @(toggle, sel, a) since toggle does not affect the functionality of the module.