Problem 1: Dennard Scaling

Assuming perfect Dennard Scaling. Imagine a processor that runs at 5MHz & 1A and dissipates 5W.

(a) What would the power and performance be in the next technology node if transistors are 1.25x smaller? Remember units!

(b) How would power density change in the new technology node? Why?
Problem 2: Simplifying Circuits

(a) Write out the full truth table for the circuit above.

(b) By inspecting the truth table drawn in part (a), draw a simplified circuit with a minimum number of logic gates.
Problem 3: Verilog

For each example, identify the error in the Verilog code and suggest a fix. You don’t have to rewrite the entire Verilog unless you think that’s the most succinct & clear way to answer.

(a) module example_one(
 input [1:0] a,
 input b, c,
 output x
);
 always @(*) begin
 case (a)
 2'b00 : x = b;
 2'b01 : x = c;
 2'b11 : x = b & c;
 2'b10 : x = b | c;
 endcase
 end
endmodule
(b) module example_two(
 input a, b, c,
 output reg [1:0] x
);
 always @(*) begin
 if (a & b & c) begin
 x = 3;
 end
 else if (a & b) begin
 x = 2;
 end
 else if (c) begin
 x = 1;
 end
 end
endmodule

(c) module example_three(
 input [1:0] a,
 input toggle, sel,
 output reg x
);
 always @(toggle) begin
 if (sel) begin
 x = a[1];
 end
 else if (!sel) begin
 x = a[0];
 end
 end
endmodule