Karnaugh Map Example

Simplify this expression:

\[\text{out} = a'b'c'd' + a'b'c'd + a'b'cd' + a'bc'd' + \\
+ a'bc'd + a'bcd + ab'c'd' + ab'cd' \\
+ ab'cd + abc'd + abc'd' + abcd \]
Karnaugh Map Example

Simplify this expression:

\[out = a'b'c'd' + a'b'c'd + a'b'cd' + a'bc'd' + +a'bc'd + a'bc'd + ab'c'd' + ab'cd' + +ab'cd + abc'd + abcd' + abcd \]
Karnaugh Map Example

Simplify this expression:

\[
\text{out} = a'b'c'd' + a'b'c'd + a'b'cd' + a'bc'd' +
\]
\[
+ a'bc'd + a'bc'd + ab'c'd' + ab'cd' +
\]
\[
+ ab'cd + abc'd + abcd' + abcd
\]
Karnaugh Map Example

- Truth Table maps to K-map
 - Can fill out K-map “in order”
- Squares in K-map not in same order as TT
 - Gray code sequencing inputs reorders terms
- Each box containing a 1 is a minterm

\[
\begin{array}{cccc}
\text{AB} & 00 & 01 & 11 & 10 \\
00 & 0 & 1 & 3 & 2 \\
01 & 4 & 5 & 7 & 6 \\
11 & 12 & 13 & 15 & 14 \\
10 & 8 & 9 & 11 & 10 \\
\end{array}
\]
Karnaugh Map Example

\[\text{out} = a'b'c'd' + a'b'c'd + a'b'cd' + a'bc'd' + a'bc'd + a'bc'd + ab'c'd' + ab'cd' + ab'cd + abc'd + abcd' + abcd\]

<table>
<thead>
<tr>
<th>(\text{AB})</th>
<th>(00)</th>
<th>(01)</th>
<th>(11)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(00)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(01)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(11)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(10)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Karnaugh Map Example

- Group minterms together
 - Groups also called *implicants*
 - Each group is a simplified product term omitting one or more variable
 - Implicant groups can wrap around edges/corners
- \(\text{out} = bd + b'd' + ac + a'c' \)
- When all minterms are grouped and no bigger groups can be made, they are known as *prime implicants*
Karnaugh Maps and Glitches

- Prime implicants that do not overlap are called *essential prime implicants*
 - Both terms cannot be true at the same time
- Output works fine if both AND gates are identical and arrive at OR at the same time
 - This is unrealistic. Real gates have varying delays

\[\text{out} = b'c' + ac \]
Karnaugh Maps and Glitches

- Prime implicants that do not overlap are called *essential prime implicants*
 - Both terms cannot be true at the same time
- Creates possibility of a glitch
 - Also known as a *static hazard*
- If one term evaluates to false before the other term evaluates to true, output can momentarily glitch

\[
out = b'c' + ac
\]
Karnaugh Maps and Glitches

- Prime implicants that do not overlap are called *essential prime implicants*
 - Both terms cannot be true at the same time
- Creates possibility of a glitch
 - Also known as a *static hazard*
- If one term evaluates to false before the other term evaluates to true, output can momentarily glitch
- Can avoid with redundant terms
 - Output “covered” by additional term

\[
\text{out} = b'c' + ac + ab'
\]
Finite State Machines
Finite State Machines

- Simple automata
- All sequential systems can be modeled as an FSM
- Useful abstraction of stateful behavior
- Represented with State Transition Diagrams
 - Describes trajectory of state machine depending on inputs
 - Usually traverse an edge every clock cycle
Simple Example (Traffic Lights)

• Simple timer-based traffic light system
• Each light is a particular state
 – Light changes once timer runs out
• Each edge depends on same input signal
 – Which state is next depends on current state
Less Simple Example (Traffic Lights)

- Reset to a flashing red light until reset goes low again
 - Add “off” state, and new “red_rst” state
 - New states flash back and forth until reset goes low
 - All other states reset to “red_rst” state until ready to continue normal operation
Implementing FSMs

- FSMs implemented in hardware with registers and logic
- How to keep track of current state?
- Could store a number in the registers
 - What format to use?
 - Binary
 - One-hot
 - Gray coding
 - Something else?
Binary Encoding

- Probably first idea you come to
- Encode each state as binary number
- Next state depends on current state code and inputs
- Code efficiently uses registers 🎉
 - Only need $\log_2(N_{\text{States}})$ bits
- Per-bit logic can get complicated 😞
 - State transitions may involve changing several bits
 - Outputs may need to be decoded
Gray Code Encoding

- Modification on Binary Encoding
- Only allow one bit to change at a time
- Simpler per-bit logic 😊
 - Basically just decide which bit to change at each edge
Gray Code Encoding

• Modification on Binary Encoding
• Only allow one bit to change at a time
• Simpler per-bit logic 😊
 – Basically just decide which bit to change at each edge
• Not all state diagrams work 😞
 – Some state changes cannot be Gray coded
One-Hot Encoding

• Only 1 wire high at a time
• Each wire represents a state
• Easier to design and debug 😊
 – Can design per-bit logic in isolation
 – Each register responsible for a state, easy to find current state from waveform/log
 – Maps well to FPGAs
• Not register efficient 😞
 – Per-bit logic can get even messier than binary
 – Needs N_{States} registers/wires
Counters and State Machines

- Divide-by-4 Clock Divider
 - Output toggles every 4 clock cycles
 - Many linear state transitions
- Do we really need a state for all the counting steps?
Counters and State Machines

- Replace counting states with a counter
 - Counter sets flag when finished counting
- Counters and Accumulators commonly used with state machines
 - Repetitive and linear steps can be delegated to a counter/accumulator