Agenda

- Latches
- Flip-Flops
- SRAMs
Latches
Latch Timing

- A positive latch is **transparent** \((q = d)\) when the clock is high and **opaque** \((q = d, \text{ sampled at negedge clock})\) when the clock is low
- \(t_{d\rightarrow q}\) : delay from \(d\) to \(q\) when the latch is transparent
- \(t_{\text{clk}\rightarrow q}\) : delay from the rising clock edge to \(d\) propagating to \(q\)

![Latch Timing Diagram](image)
Latch Circuits

‘Feedback-breaking’ latch
Transparent high

‘State-forcing’ latch
Transparent low

SR latch
Common interview question

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>\bar{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>latch</td>
<td>latch</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Building a Flip-Flop from Latches

- Clock pulsed latch
 - Latch becomes transparent for the pulse duration only, then holds data
 - Not common anymore, sometimes used in high performance circuits
 - Positive hold time

Pair of latches – edge triggered (posedge clk!!!)
- Commonly used technique
- L2 holds output data stable when clock is high.
- Negative hold time
Flip-Flops
Hold, Setup, clk->q Time

- This is a negative edge flip-flop as drawn
- We'll consider the positive edge case

- Setup time: data must be stable before the clock edge
 - Violations can be avoided (how?)

- Clk-to-q time: delay from a clock edge to q = d
 - Essentially the delay of 1 latch
Path Timing Constraints

- **Setup constraint:** $T_{\text{clk}} > t_{\text{clk} \rightarrow q} + t_{\text{logic, max}} + t_{\text{setup}}$
 - The clock period must be greater than the delay of the critical path
- **Hold constraint:** $t_{\text{hold}} < t_{\text{clk} \rightarrow q} + t_{\text{logic, min}}$
 - The minimum logic delay must be greater than the hold time
False Paths

- Be careful about finding the critical path by statically adding up delays
- Some paths may not be exercised based on logic expressions
- Here, the critical path is not 400ns. What is it?

![Diagram]
Clock Skew

- Skew: the **deterministic clock arrival time difference** between 2 flops
 - 2 flops referred to as launching & receiving
 - Positive = clock to receiving arrives later than to launching
 - Negative = clock to receiving arrives earlier than to launching

- New timing equations:
 - Setup: \(T_{\text{clk}} > t_{\text{clk->q}} + t_{\text{logic,max}} + t_{\text{setup}} - t_{\text{skew}} \)
 - Positive skew can improve clock frequency
 - Negative skew hurts setup margin
 - Hold: \(t_{\text{hold}} + t_{\text{skew}} < t_{\text{clk->q}} + t_{\text{logic,min}} \)
 - Skew effect is opposite from setup

These buffers help meeting setup but hurt hold
These buffers help meeting hold but hurt setup
Clock Jitter

- Jitter is the **non-deterministic** difference in clock arrival times
 - Types: period & cycle-to-cycle
 - Can be treated like skew in timing calculations
 - Assume worst case jitter in the unfavorable direction for timing calculation
 - Lump jitter of both the launching and receiving FFs into an equivalent skew

“Dual-dirac” model source
SRAMs
SRAM Structure:
SRAM Structure:
SRAM: Basic Static Memory Component:
SRAM: How to Write?

- **Challenge**: How do you overpower the feedback loop?
- **Challenge**: Writing 0 vs writing 1?
SRAM: How to Write?

- **Challenge**: How do you overpower the feedback loop?
- **Challenge**: Writing 0 vs writing 1?
6T SRAM Cell
6T SRAM Operation

Write

Hold

Read
6T SRAM Cell Sizing

- Read Sizing:

- Write Sizing:
Dual Port SRAM Modifications: 1 Read 1 Write

- What additional logic is needed?
Questions?