
EECS 151/251A
SP2022 Discussion 9

GSI: Yikuan Chen, Dima Nikiforov

Slides modified from Zhenghan Lin’s and Harrison Liew’s slides

EECS 151/251A DISCUSSION 9

Agenda

�Multiplier

�Latch

2

3

Multiplier

EECS 151/251A DISCUSSION 9

4

Unsigned Multiplication Example

● Partial Products can be generated in
parallel

● Challenge: improve the addition of partial
products

4’b0011 (3)
× 4’b0110 (6)

4’b0011 (3)
× 4’b0110 (6)

0000
0011
0011

+ 0000

00010010 (18)

16 + 2

Partial Products

EECS 151/251A DISCUSSION 9

5

Carry-Save Addition

● When you want to add more than 2 numbers
● When we generate a carry in a given column, add

it to the 2 values in the next column.
○ In turn, may generate its own new carry

● Delay adding carry bits until the end
● Basis of Unit Carry-Save Adder:

○ Takes in a, b, cin (all are multi-bit)
○ Produces a sum and cout (all are multi-bit)

● Benefits:
○ CSAs have no carry ripple => small & fast!
○ Only 1 standard CLA/Parallel Prefix Adder at end
○ Addition is associative => trees!

=

EECS 151/251A DISCUSSION 9

6

Array Multiplier w/ CSA

EECS 151/251A DISCUSSION 9

7

Wallace Tree Multiplier – Reduce the rows!

Method to construct Wallace Tree:
1. Draw a dot diagram where

each column has as many
dots as number of partial
products

2. Group dots in the same
column by 2 (half adder) or 3
(full adder)

3. Propagate carries and sum by
adding one dot in the
grouped column and one dot
in the next column

EECS 151/251A DISCUSSION 9

8

Radix-4 Multiplication

● Binary multiplication -> N partial products! Can we reduce this?

○ Yes! Let’s use a larger radix (think: base)

● E.g. 2 bits at a time (radix 4) -> halve number of partial products

● Recall: Multiplications by powers of 2 are left shifts

1101 * 0110 à 1101* [01][10]

b Digit Partial Product Partial Product (Rewritten)

00 0*A 0

01 1*A A

10 2*A 4*A - 2*A

11 3*A 4*A - A

EECS 151/251A DISCUSSION 9

9

Booth Recoding –

● 4*A = A << 2
● 2*A = A << 1
● Recall: radix 4 multiplication => shift left by 2 positions

for next partial product
● Therefore, any 4*A term can be handled in the next

partial product!
○ Multiplier looks a 3 (rather than just 2) bits
○ Extra bit is MSB of the previous

B Digit Partial
Product

Partial Product
(Rewritten)

00 0*A 0
01 1*A A
10 2*A 4*A - 2*A
11 3*A 4*A - A

EECS 151/251A DISCUSSION 9

10

Booth Recoding
Bi+1 Bi Bi-1 Action Comment
0 0 0 Add 0
0 0 1 Add A Includes +4*A from previous radix 4 digit = +A in this position due to left

shift by 2
0 1 0 Add A
0 1 1 Add 2*A Includes +4*A from previous round (+A in this position). *2 is implemented

as a left shift by 1
1 0 0 Sub 2*A 4*A will be added in when handling next radix 4 digit. *2 is implemented as

a left shift by 1
1 0 1 Sub A 4*A will be added in when handling next radix 4 digit. Includes +4*A from

previous radix 4 digit (+A in this position)
1 1 0 Sub A 4*A will be added in when handling next radix 4 digit.
1 1 1 Add 0 4*A will be added in when handling next radix 4 digit. Includes +4*A from

previous radix 4 digit (+A in this position)

EECS 151/251A DISCUSSION 9

11

Booth Recoding Example (Unsigned)

● 6 * 7
● B-1 = 0

Bi+1 Bi Bi-1 Action
0 0 0 Add 0
0 0 1 Add A
0 1 0 Add A
0 1 1 Add 2*A
1 0 0 Sub 2*A
1 0 1 Sub A
1 1 0 Sub A
1 1 1 Add 0

4’b0110 (6)
* 4’b0111 (7)

- 0110 (Sub A)
+ 01100 (Add 2A)
+ 0000 (Add 0)

+ 11111010 (Sub A)
+ 01100 (Add 2A)
+ 0000 (Add 0)

(1)00101010 (42)

EECS 151/251A DISCUSSION 9

12

Signed Multiplication: Baugh-Wooley

● Recall: 2’s complement MSB has negative weight, meaning:
If a[N-1:0] has its MSB=1, then rather than meaning 2^(N-1), it means -2^(N-1)

● Nominally:
1. Subtract last partial product
2. Sign-extend the rest of the partial products

● Recall 2’s complement negation: subtract A = add (~(A) + 1)
○ Result: basically same hardware as unsigned mult.
○ Implementation: invert some bits, insert a 1 left of the first & last partial products

1 p0[3] p0[2] p0[1] p0[0]
+ ~p1[3] p1[2] p1[1] p1[0] 0
+ ~p2[3] p2[2] p2[1] p2[0] 0 0
+ 1 ~p3[3] ~p3[2] ~p3[1] ~p3[0] 0 0 0

P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

EECS 151/251A DISCUSSION 9

13

Latch

EECS 151/251A DISCUSSION 9

14

Latch Timing

● A positive latch is transparent (q = d) when the clock is high and opaque (q = d, sampled at
negedge clock) when the clock is low

● td->q : delay from d to q when the latch is transparent
● tclk->q : delay from the rising clock edge to d propagating to q

EECS 151/251A DISCUSSION 9

15

Latch Circuits

‘State-forcing’ latch
Transparent low

‘Feedback-breaking’ latch
Transparent high

SR latch
Common interview question

16

Building a Flip-Flop from Latches

● Clock pulsed latch

○ Latch becomes transparent for the pulse

duration only, then holds data

○ Not common anymore, sometimes used in high

performance circuits

○ Positive hold time

Pair of latches – edge triggered (posedge clk!!!)

◦ Commonly used technique

◦ L2 holds output data stable when clock is high.

◦ Negative hold time

17

Questions?

