Contents

- Pipelining
- Power
Pipelining

How would you pipeline?
The path is halved. What would be the issue?
We need to delay wa. What else?
Data Hazard

REGFILE (async read)

Data hazard when wa_p == ra1 or wa_p == ra2.
Data Hazard: Stalling

Stall using CE. MUX to disable next write.
Data Hazard: Forwarding

Forward wd to rd's in parallel with write-back.

REGFILE (async read)
Power

- Dynamic power
 - Switching power
 - Short-circuit power
- Static power
 - Leakage power = Leakage current * Vdd
Discharging Capacitor

Energy dissipated:

\[\int I V \, dt = \int \frac{dQ}{dt} V \, dt = \int C \frac{dV}{dt} V \, dt = \int CV \, dV = \frac{1}{2} CV_{dd}^2 \]
Charging Capacitor

Energy provided from source:

$$\int IV_{dd} dt = V_{dd} \int \frac{dQ}{dt} dt = V_{dd} \int dQ = CV_{dd}^2$$

One half is charged to capacitor; the other half is dissipated.
Switching Power

If the output flips every cycle, \[\frac{1}{2} CV_{dd}^2 f \]

If the output flips with the probability \(\alpha \) for each cycle, \[\frac{1}{2} \alpha CV_{dd}^2 f \]
Tricky Example

Why is this tricky?
Tricky Example

How much energy dissipated?
- when 0 -> (Vdd - Vth)
- when Vdd -> Vth
Tricky Example

Energy provided from source:
\[\int IV_{dd} dt = V_{dd} \int \frac{dQ}{dt} dt = V_{dd} \int dQ = CV_{dd}(V_{dd} - V_{th}) \]

Energy charged in capacitor:
\[\frac{1}{2} C(V_{dd} - V_{th})^2 \]

Energy dissipated:
\[CV_{dd}(V_{dd} - V_{th}) - \frac{1}{2} C(V_{dd} - V_{th})^2 = \frac{1}{2} CV_{dd}^2 - \frac{1}{2} CV_{th}^2 \]
Tricky Example

Energy originally in capacitor:
\[\frac{1}{2}CV_{dd}^2 \]

Energy remaining in capacitor:
\[\frac{1}{2}CV_{th}^2 \]

Energy dissipated:
\[\frac{1}{2}CV_{dd}^2 - \frac{1}{2}CV_{th}^2 \]
Short-Circuit Current

Measure here for $A = 0 \rightarrow 1$