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EECS 16A Designing Information Devices and Systems I
Fall 2021 Discussion 4A

1. Mechanical Inverses
For each sub-part below, determine whether or not the inverse of A exists.
If it exists, compute the inverse using Gauss-Jordan method.

(a) A =

[
1 0
0 9

]
Answer: We use Gaussian elimination (also known as the Gauss-Jordan method):[

1 0 1 0
0 9 0 1

]
R2← 1

9 R2−−−−−−→
[

1 0 1 0
0 1 0 1

9

]
.

Therefore, we get A−1 =

[
1 0
0 1

9

]
.

(b) A =

[
a b
c d

]
Answer: We can again use the Gauss-Jordan method:[

a b 1 0
c d 0 1

]
R1← 1

a R1−−−−−−→
[

1 b
a

1
a 0

c d 0 1

]
R2←R2−cR1−−−−−−−→

[
1 b

a
1
a 0

0 d− c
a b − c

a 1

]
R2← 1

d− c
a b R2

−−−−−−−→

[
1 b

a
1
a 0

0 1 − c
a

d− c
a b

1
d− c

a b

]
=

[
1 b

a
1
a 0

0 1 −c
ad−bc

a
ad−bc

]
R1←R1− b

a R2−−−−−−−−→
[

1 0 1
a +

b
a

c
ad−bc

−b
ad−bc

0 1 −c
ad−bc

a
ad−bc

]
=

[
1 0 d

ad−bc
−b

ad−bc
0 1 −c

ad−bc
a

ad−bc

]
.

Therefore, we get that A−1 = 1
ad−bc

[
d −b
−c a

]
.

This is a known formula which, if you find useful, you can use for any general 2x2 matrix.
Note that the matrix does not have an inverse if ad−bc = 0.

(c) A =

[
1 5 3
2 −2 4

]
Answer:
Since have a non-square matrix A, there cannot be a unique inverse.
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We can understand this from the fact that for ~y = A~x the vectors ~x ∈ R3 and ~y ∈ R2 live in different
spaces. This leads us to conclude that there cannot be a unique~x for each~y.

(d) A =

5 5 15
2 2 4
1 1 4


Answer: We use Gaussian elimination: 5 5 15 1 0 0

2 2 4 0 1 0
1 1 4 0 0 1

 R1← 1
5 R1−−−−−→

 1 1 3 1
5 0 0

2 2 4 0 1 0
1 1 4 0 0 1


R2← 1

2 R2−−−−−→

 1 1 3 1
5 0 0

1 1 2 0 1
2 0

1 1 4 0 0 1


R2←R2−R1−−−−−−−→

 1 1 3 1
5 0 0

0 0 −1 −1
5

1
2 0

1 1 4 0 0 1


R3←R3−R1−−−−−−−→

 1 1 3 1
5 0 0

0 0 −1 −1
5

1
2 0

0 0 1 −1
5 0 1


R3←R3+R2−−−−−−−→

 1 1 3 1
5 0 0

0 0 −1 −1
5

1
2 0

0 0 0 −2
5

1
2 1

 .
While row-reducing, we notice that the second column doesn’t have a pivot (and that there is also a
row of zeros). Therefore, no inverse exists.

2. Identifying a Subspace: Proof

Is the set

V =

~v
∣∣∣∣∣∣~v = c

1
1
1

+d

1
0
1

 , where c,d ∈ R


a subspace of R3? Why/why not?

Answer:

Yes, V is a subspace of R3. We will prove this by using the definition of a subspace.

First of all, note that V is a subset of R3 – all elements in V are of the form

c+d
c

c+d

, which is a 3-dimensional

real vector.

Now, consider two elements~v1,~v2 ∈V and α ∈ R.
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This means that there exists c1,d1 ∈ R, such that ~v1 = c1

1
1
1

+ d1

1
0
1

. Similarly, there exists c2,d2 ∈ R,

such that~v2 = c2

1
1
1

+d2

1
0
1

.

Now, we can see that

~v1 +~v2 = (c1 + c2)

1
1
1

+(d1 +d2)

1
0
1

 ,
so~v1 +~v2 ∈V .

Also,

α~v1 = (αc1)

1
1
1

+(αd1)

1
0
1

 ,
so α~v1 ∈V .

Furthermore, we observe that the zero vector is contained in V , when we set c = 0 and d = 0.

We have thus identified V as a subset of R3, shown both of the no escape (closure) properties (closure under
vector addition and closure under scalar multiplication), as well as the existence of a zero vector, so V is a
subspace of R3.

It’s important to note that satisfying the subset property and the two forms of closure additionally implies
this subspace V also satisfies the axioms of a vector space, and therefore is definitionally also a vector space.

3. Exploring Column Spaces and Null Spaces

• The column space is the span of the column vectors of the matrix.

• The null space is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

i. What is the column space of A? What is its dimension?

ii. What is the null space of A? What is its dimension?

iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?

iv. Do the columns of A span R2? Do they form a basis for R2? Why or why not?

(a)
[

1 0
0 0

]
Answer: Column space: span

{[
1
0

]}
Null space: span

{[
0
1

]}
The matrix is already row reduced. The column spaces of the row reduced matrix and the original
matrix are the same.
The column space does not span R2 and thus are not a basis for R2.
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(b)
[

0 1
0 1

]
Answer:

Column space: span
{[

1
1

]}
Null space: span

{[
1
0

]}
The two column spaces are not the same.
Not a basis for R2.

(c)
[

1 2
−1 1

]
Answer:
Column space: R2

Null space: span
{[

0
0

]}
The two column spaces are the same as the column span R2.
This is a basis for R2.

(d)
[
−2 4
3 −6

]
Answer:

Column space: span
{[

1
−3

2

]}
Null space: span

{[
2
1

]}
The two column spaces are not the same.
Not a basis for R2.

(e)
[

1 −1 −2 −4
1 1 3 −3

]
Answer:

i. The columnspace of the columns is R2. The columns of A do not form a basis for R2. This is
because the columns of A are linearly dependent.

ii. The following algorithm can be used to solve for the null space of a matrix. The procedure is
essentially solving the matrix-vector equation A~x =~0 by performing Gaussian elimination on A.
We start by performing Gaussian elimination on matrix A to get the matrix into upper-triangular
form.

[
1 −1 −2 −4
1 1 3 −3

]
∼
[

1 −1 −2 −4
0 2 5 1

]
∼
[

1 −1 −2 −4
0 1 5

2
1
2

]
∼
[

1 0 1
2 −7

2
0 1 5

2
1
2

]
reduced row echelon form

x1 +
1
2

x3−
7
2

x4 = 0

UCB EECS 16A, Fall 2021, Discussion 4A, All Rights Reserved. This may not be publicly shared without explicit permission. 4



Last Updated: 2021-09-20 21:39 5

x2 +
5
2

x3 +
1
2

x4 = 0

x3 is free and x4 is free

Now let x3 = s and x4 = t. Then we have:

x1 +
1
2

s− 7
2

t = 0

x2 +
5
2

s+
1
2

t = 0

Now writing all the unknowns (x1,x2,x3,x4) in terms of the dummy variables:

x1 =−
1
2

s+
7
2

t

x2 =−
5
2

s− 1
2

t

y = s

z = t


x1
x2
x3
x4

=


−1

2 s+ 7
2 t

−5
2 s− 1

2 t
s
t

=


−1

2 s
−5

2 s
s
0

+


7
2 t
−1

2 t
0
t

= s


−1

2
−5

2
1
0

+ t


7
2
−1

2
0
1


So every vector in the nullspace of A can be written as follows:

Nullspace(A) = s


−1

2
−5

2
1
0

+ t


7
2
−1

2
0
1


Therefore the nullspace of A is

span




−1

2
−5

2
1
0

 ,


7
2
−1

2
0
1





A has a 2-dimensional null space.
iii. In this case, the column space of the row reduced matrix is also R2, but this need not be true in

general.
iv. No, the columns of A do not form a basis for R2.

4. Exploring Dimension, Linear Independence, and Basis

In this problem, we are going to talk about the connections between several concepts we have learned about
in linear algebra – linear independence, dimension of a vector space/subspace, and basis.

Let’s consider the vector space Rk and a set of n vectors {~v1,~v2, . . . ,~vn} in Rk.
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(a) For the first part of the problem, let k > n. Can {~v1,~v2, . . . ,~vn} form a basis for Rk? Why/why not?
What conditions would we need?
Answer:
No, {~v1,~v2, . . . ,~vn} cannot form a basis for Rk. The dimension of Rk is k, so you would need k linearly
independent vectors to describe the vector space. Since n < k, this is not possible.

(b) Let k = n. Can {~v1,~v2, . . . ,~vn} form a basis for Rk? Why/why not? What conditions would we need?
Answer:
Fact: matrix V is invertible ⇐⇒ V is square and has linearly independent columns
Note you have not proven this, but you will see the proof in EECS16B. Yes, this is possible. The only
condition we need is that {~v1,~v2, . . .~vn} is linearly independent. If the vectors are linearly independent,
since there are k of them, we can put them into a square matrix V :

V =

 | |
~v1 · · · ~vn

| |


This matrix is square because the number of entries in the column vectors (k) is equal to the number
of column vectors (n).
Using the fact from above, we know that if the square matrix V has n linearly independent columns, it
will be invertible. If the matrix V is invertible, the matrix vector equation V~x =~b will always have a
unique solution for all vectors~b. Thus all possible~b ∈ Rk are in the span of the columns of matrix V :
({~v1,~v2, . . .~vn}).
To summarize, we can conclude then that if n= k and {~v1,~v2, . . .~vn} is linearly independent, {~v1,~v2, . . .~vn}
is a basis for Rk.

(c) Now, let k < n. Can {~v1,~v2, . . . ,~vn} form a basis for Rk? What vector space could they form a basis
for?
Hint: Think about whether the vectors can be linearly independent.
Answer:
No, {~v1,~v2, . . . ,~vn} cannot form a basis for Rk. Rk will be spanned by k linearly independent vectors.
Any additional vectors in Rk must already exist in the span of the previous vectors, and are therefore
linearly dependent. Since n > k, some of the vectors have to be linearly dependent, so they cannot
form a basis.
The two regimes—one where n > k and one where n < k—give rise to two different classes of inter-
esting problems. You might learn more about them in upper division courses!
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