EECS 16A Designing Information Devices and Systems I

Fall 2021

Recall from lecture the way to compute a determinant of any 2×2 matrix is by using the following formula:

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \operatorname{det}(\mathbf{A})=a d-b c
$$

1. Mechanical Determinants

(a) Compute the determinant of $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.

Answer:
We can use the form of a 2×2 determinant from lecture:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a d-b c
$$

Therefore,

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\right)=2 \cdot 3-0 \cdot 0=6
$$

(b) Compute the determinant of $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$.

Answer:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]\right)=2 \cdot 3-1 \cdot 0=6
$$

(c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain intuitively why the determinant of a matrix with linearly dependent column vectors is always 0 .

Answer: Consider an example in \mathbb{R}^{2}. If the vectors are linearly independent, we can form some parallelogram and calculate some nonzero area, and we get a nonzero determinant as expected. If the vectors are linearly dependent though, the "parallelogram" we form ends up only having 1 dimension. The other dimension was compressed to 0 , and so we have 0 area, corresponding to the 0 determinant. This idea generalizes to N dimensions. If we have fewer than N linearly independent vectors, then the multi-dimensional volume will have at least 1 dimension compressed to 0 , giving us 0 volumen and 0 determinant.

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix \mathbf{M} and the associated eigenvectors. State if the inverse of \mathbf{M} exists.
(a) $\mathbf{M}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$

Answer:
Let's begin by finding the eigenvalues:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
0-\lambda & 1 \\
-2 & -3-\lambda
\end{array}\right]\right)=0 \\
&-\lambda(-3-\lambda)+2=0 \\
& \lambda^{2}+3 \lambda+2=0 \\
&(\lambda+2)(\lambda+1)=0 \\
& \lambda=-1,-2
\end{aligned}
$$

$\lambda=-1:$

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
0-(-1) & 1 & 0 \\
-2 & -3-(-1) & 0
\end{array}\right]=\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-2 & -2 & 0
\end{array}\right] \stackrel{\text { G.E. }}{\Longrightarrow}\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\\
\begin{array}{cc}
x_{1}+x_{2} & =0 \\
x_{2} & =t
\end{array} \Longrightarrow\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t
\end{gathered}
$$

The eigenspace for $\lambda=-1$ is $\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
$\lambda=-2$:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
0-(-2) & 1 & 0 \\
-2 & -3-(-2) & 0
\end{array}\right]=\left[\begin{array}{cc|c}
2 & 1 & 0 \\
-2 & -1 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{cc|c}
1 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] } \\
& x_{1}+x_{2} / 2=0 \\
& x_{2}=t
\end{aligned} \Longrightarrow\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-t / 2 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right] t, ~ l
$$

The eigenspace for $\lambda=-2$ is span $\left\{\left[\begin{array}{c}-1 / 2 \\ 1\end{array}\right]\right\}$.
Note that we have no zero eigenvalues, the columns of A are linearly independent, and the determinant of A is non-zero (evaluate our polynomial in λ at $\lambda=0$). Any of these are equivalent conditions for saying that a square matrix is invertible.
(b) $\mathbf{M}=\left[\begin{array}{ll}-2 & 4 \\ -4 & 8\end{array}\right]$

Answer:
Let's begin by finding the eigenvalues:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 4 \\
-4 & 8-\lambda
\end{array}\right]\right)=0 \\
&(-2-\lambda)(8-\lambda)+16=0 \\
& \lambda^{2}-6 \lambda=0 \\
& \lambda(\lambda-6)=0 \\
& \lambda=0,6
\end{aligned}
$$

$\lambda=0:$

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-2 & 4 & 0 \\
-4 & 8 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\begin{array}{cc}
x_{1}-2 x_{2} & =0 \\
x_{2} & =t
\end{array} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] t
\end{gathered}
$$

The eigenspace for $\lambda=0$ is span $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.
$\lambda=6:$

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-6 & 4 & 0 \\
4 & 8-6 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
-8 & 4 & 0 \\
-4 & 2 & 0
\end{array}\right] \stackrel{\text { G.E. }}{\Longrightarrow}\left[\begin{array}{cc|c}
1 & -1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
x_{1}-x_{2} / 2
\end{gathered}=0 \Rightarrow\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
t / 2 \\
t
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right] t, t
$$

The eigenspace for $\lambda=6$ is $\operatorname{span}\left\{\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right]\right\}$.
Matrix \mathbf{M} has linearly dependent columns, therefore the inverse \mathbf{M}^{-1} does not exist. Note also that \mathbf{M} has an eigenvalue of 0 so that $N(\mathbf{M})$ contains more than just $\overrightarrow{0}$. For this reason also \mathbf{M} is not invertible.
(c) $\mathbf{M}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$

Answer:
Let's begin by finding the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 0 \\
1 & -\lambda
\end{array}\right]\right)=0 \\
\lambda^{2} & =0 \\
\lambda & =0(\times 2)
\end{aligned}
$$

$\lambda=0:$

$$
\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { cannot be further reduced by G.E. }
$$

$$
x_{2}=0, x_{1}=t \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] t
$$

The eigenspace for $\lambda=0$ is $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. Note even though $\lambda=0$ is a eigenvalue with multiplicity 2 (occurs as a root twice for the characteristic polynomial), the dimension of its eigenspace is only 1. This shows that the number of linearly independent eigenvectors for a given eigenvalue is not necessarily equal to the multiplicity, i.e. the number of times that eigenvalue occurs in the characteristic polynomial.
Matrix \mathbf{M} has a zero column (linearly dependent columns), therefore the inverse \mathbf{M}^{-1} does not exist.
(d) (PRACTICE) $\mathbf{M}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

Answer: Let's begin by finding the eigenvalues:

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right)=0 \\
\lambda^{2}+1 & =0
\end{aligned}
$$

From the above equation, we know that the eigenvalues are $\lambda=i$ and $\lambda=-i$.
For the eigenvalue $\lambda=i$:

$$
\begin{aligned}
(\mathbf{M}-i \mathbf{I}) \vec{x} & =\overrightarrow{0} \\
\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-i\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) \vec{x} & =\overrightarrow{0} \\
{\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right] \vec{x} } & =\overrightarrow{0}
\end{aligned}
$$

We can also perform Gaussian elimination on matrices with imaginary or complex numbers:

$$
\left[\begin{array}{cc|c}
-i & -1 & 0 \\
1 & -i & 0
\end{array}\right] \stackrel{\text { G.E. }}{\Longrightarrow}\left[\begin{array}{cc|c}
1 & -i & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \begin{gathered}
x_{1}-i x_{2}=0 \\
x_{2}=t
\end{gathered} \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right] t
$$

So the eigenspace is span $\left\{\left[\begin{array}{l}i \\ 1\end{array}\right]\right\}$.
For the eigenvalue $\lambda=-i$:

$$
\begin{gathered}
(\mathbf{M}+i \mathbf{I}) \vec{x}=\overrightarrow{0} \\
\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+i\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \vec{x}=\overrightarrow{0} \\
\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right]\right) \vec{x}=\overrightarrow{0} \\
\\
{\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right] \vec{x}=\overrightarrow{0}} \\
{\left[\begin{array}{cc|c}
i & -1 & 0 \\
1 & i & 0
\end{array}\right] \stackrel{\text { G.E. }}{\Longrightarrow}\left[\begin{array}{cc|c}
1 & i & 0 \\
0 & 0 & 0
\end{array}\right]}
\end{gathered} \Longrightarrow \begin{array}{cc}
x_{1}+i x_{2}=0 \\
x_{2}=t
\end{array} \Longrightarrow\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right] t .
$$

The second eigenspace is span $\left\{\left[\begin{array}{c}-i \\ 1\end{array}\right]\right\}$.
(e) (PRACTICE) $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$

Answer:
Let's begin by finding the eigenvalues:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
0 & 9-\lambda
\end{array}\right]\right)=0
$$

The determinant of a diagonal matrix is the product of the entries.

$$
(1-\lambda)(9-\lambda)=0
$$

From the above equation, we know that the eigenvalues are $\lambda=1$ and $\lambda=9$.
For the eigenvalue $\lambda=1$:

$$
\begin{aligned}
(\mathbf{M}-1 \mathbf{I}) \vec{x} & =\overrightarrow{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]-1\left[\begin{array}{lr}
1 & 0 \\
0 & 1
\end{array}\right]\right) \vec{x} & =\overrightarrow{0} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 8
\end{array}\right] \vec{x} } & =\overrightarrow{0}
\end{aligned}
$$

From the second equation in the system, $x_{2}=0$, with any solution having the form $\left[\begin{array}{l}1 \\ 0\end{array}\right] t$ for $t \in \mathbb{R}$. The eigenspace is thus span $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.
For the eigenvalue $\lambda=9$:

$$
\begin{aligned}
(\mathbf{M}-9 \mathbf{I}) \vec{x} & =\overrightarrow{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]-9\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \vec{x} & =\overrightarrow{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 9
\end{array}\right]-\left[\begin{array}{cc}
9 & 0 \\
0 & 9
\end{array}\right]\right) \vec{x} & =\overrightarrow{0} \\
{\left[\begin{array}{cc}
-8 & 0 \\
0 & 0
\end{array}\right] \vec{x} } & =\overrightarrow{0}
\end{aligned}
$$

From the first equation in the system, $x_{1}=0$, so any solution must take the form $\left[\begin{array}{l}0 \\ 1\end{array}\right] t$ for $t \in \mathbb{R}$. The eigenspace is span $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
The matrix is invertible.

3. Eigenvalues and Special Matrices - Visualization

An eigenvector \vec{v} belonging to a square matrix \mathbf{A} is a nonzero vector that satisfies

$$
\mathbf{A} \vec{v}=\lambda \vec{v}
$$

where λ is a scalar known as the eigenvalue corresponding to eigenvector \vec{v}. Rather than mechanically compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.
(a) Does the identity matrix in \mathbb{R}^{n} have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors? Answer: Multiplying the identity matrix with any vector in \mathbb{R}^{n} produces the same vector, that is, $\mathbf{I} \vec{x}=\vec{x}=1 \cdot \vec{x}$. Therefore, $\lambda=1$. Since \vec{x} can be any vector in \mathbb{R}^{n}, the corresponding eigenvectors are all vectors in \mathbb{R}^{n}.
(b) Does a diagonal matrix $\left[\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ 0 & 0 & d_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n}\end{array}\right]$ in \mathbb{R}^{n} have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
Answer: Since the matrix is diagonal, multiplying the diagonal matrix with any standard basis vector \vec{e}_{i} produces $d_{i} \vec{e}_{i}$, that is, $\mathbf{D} \vec{e}_{i}=d_{i} \vec{e}_{i}$. Therefore, the eigenvalues are the diagonal entries d_{i} of \mathbf{D}, and the corresponding eigenvector associated with $\lambda=d_{i}$ is the standard basis vector \vec{e}_{i}.
(c) Conceptually, does a rotation matrix in \mathbb{R}^{2} by angle θ have any eigenvalues $\lambda \in \mathbb{R}$? For which angles is this the case?

Answer: In a conceptual sense, there are three cases:

Rotation by 0° : (more accurately, any integer multiple of 360°), which yields a rotation matrix $\mathbf{R}=\mathbf{I}$: This will have one eigenvalue of +1 because it doesn't affect any vector $(\mathbf{R} \vec{x}=\vec{x})$. The eigenspace associated with it is \mathbb{R}^{2}.

Rotation by 180° : (more accurately, any angle of $180^{\circ}+n \cdot 360^{\circ}$ for integer n), which yields a rotation matrix $\mathbf{R}=-\mathbf{I}$: This will have one eigenvalue of -1 because it "flips" any vector $(\mathbf{R} \vec{x}=-\vec{x})$. The eigenspace associated with it is \mathbb{R}^{2}.

Any other rotation: there aren't any real eigenvalues. The reason is, if there were any real eigenvalue $\lambda \in \mathbb{R}$ for a non-trivial rotation matrix, it means that we can get $\mathbf{R} \vec{x}=\lambda \vec{x}$ for some $\vec{x} \neq \overrightarrow{0}$, which means that by rotating a vector, we scaled it. This is a contradiction (again, unless $\mathbf{R}=\mathbf{I}$). Refer to Figure 1 for a visualization.

Figure 1: Rotation will never scale any non-zero vector (by a real number) unless it is rotation by an integer multiple of 360° (identity matrix) or the rotation angle is $\theta=180^{\circ}+n \cdot 360^{\circ}$ for any integer $n(-\mathbf{I})$.
(d) (PRACTICE) Now let us mechanically compute the eigenvalues of the rotation matrix in \mathbb{R}^{2}. Does it agree with our findings above? As a refresher, the rotation matrix \mathbf{R} has the following form:

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Answer: Using our known determinant formula for 2×2 matrices $\operatorname{det}(A)=a d-b c$ we can compute the characteristic polynomial

$$
\operatorname{det}(\mathbf{R}-\lambda \mathbf{I})=\operatorname{det}\left[\begin{array}{cc}
\cos (\theta)-\lambda & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)-\lambda
\end{array}\right]=\cos (\theta)^{2}+\sin (\theta)^{2}-2 \cos (\theta) \lambda+\lambda^{2} \equiv 0
$$

From here we can first simplify $1=\cos (\theta)^{2}+\sin (\theta)^{2}$ and then use the quadratic formula to attain the two possible λ values.

$$
\lambda=\cos (\theta) \pm \sqrt{\cos (\theta)^{2}-1}=\cos (\theta) \pm i \sqrt{1-\cos (\theta)^{2}}=\cos (\theta) \pm i \sqrt{\sin (\theta)^{2}}
$$

In exponential phase notation we can write the two eigenvalues more concisely: $\lambda=e^{ \pm i \theta}$
(e) Does the reflection matrix \mathbf{T} across the x -axis in $\mathbb{R}^{2 \times 2}$ have any eigenvalues $\lambda \in \mathbb{R}$?

$$
\mathbf{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Answer: Yes, both +1 and -1 . Mechanically, we could go through the methods we have learned for attaining a characteristic polynomial from $\operatorname{det}(T-\lambda I)=(1-\lambda)(-1-\lambda)-(0)(0)$ and recalling our eigenvalues are the roots of this polynomial (the values where this polynomial is zero). This works because matrix $T-\lambda I$ only has a nonempty null space when its determinant is zero!

$$
\operatorname{det}(T-\lambda I)=\lambda^{2}-1 \equiv 0 \quad \rightarrow \quad \lambda= \pm 1
$$

Conceptually, we can reason that a vector along the x -axis will be unaffected by \mathbf{T} (in this case $\lambda=+1$), where as a vector along the y-axis gets perfectly flipped by \mathbf{T} (in this case $\lambda=-1$)

NOTE: A 2×2 reflection matrix always has $\lambda= \pm 1$, REGARDLESS of the axis of reflection. Why? Reflecting any vector that is on the reflection axis will not affect it (eigenvalue +1). Reflecting any vector orthogonal (perpendicular) to the reflection axis will just "flip it/negate it" (eigenvalue -1). In other words, the set of vectors that lie along the axis of reflection is the eigenspace associated with the eigenvalue +1 and the set of vectors orthogonal to the axis of reflection is the eigenspace associated with the eigenvalue -1 .
(f) If a matrix \mathbf{M} has an eigenvalue $\lambda=0$, what does this say about its null space? What does this say about the solutions of the system of linear equations $\mathbf{M} \vec{x}=\vec{b}$?
Answer: $\quad N(A)$ is not just $\overrightarrow{0}$ as we have some $\vec{v} \neq \overrightarrow{0}$ satisfying $A \vec{v}=\lambda \vec{v}$. Another way we can state this is that $\operatorname{dim}(N(A))>0$.
Thus we can imagine if $\mathbf{M} \vec{x}=\vec{b}$ has a solution then $\mathbf{M}(\vec{x}+\vec{v})=\vec{b}$ also solves the system, hence there are infinite solutions. Yet we also know that a nonzero null space means \mathbf{M} has linearly dependent columns, so the vector \vec{b} could lie outside of this span in which case there is no solution.

In summary, there are either infinite or no solutions to the system of equations $\mathbf{M} \vec{x}=\vec{b}$
(g) (Practice) Does the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
Answer:
Note that the matrix has linearly dependent columns. Therefore, according to part (f), one eigenvalue is $\lambda=0$. The corresponding eigenvector, which is equivalent to the basis vector for the null space, is $\left[\begin{array}{c}1 \\ -1\end{array}\right]$. The other eigenvalue is, by inspection, $\lambda=1$ with the corresponding eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ because $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

