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EECS 16A Designing [nformation Devices and Systems |
Fall 2021 Discussion 4B

Recall from lecture the way to compute a determinant of any 2 x 2 matrix is by using the following formula:

a b
A= [c d] det(A) = ad — bc

1. Mechanical Determinants

(a) Compute the determinant of [3 (3)} .

Answer:

We can use the form of a 2 x 2 determinant from lecture:

dct({a b}) =ad — bc
c d

(20T o
(P Y)=25 006

(b) Compute the determinant of [2 1} .

Therefore,

0 3

e 2 M) =23 1.0=¢
“\lo e U=0

(c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the
column vectors. Explain intuitively why the determinant of a matrix with linearly dependent column
vectors is always 0.

Answer:

(U]
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Answer:  Consider an example in R?. If the vectors are linearly independent, we can form some
parallelogram and calculate some nonzero area, and we get a nonzero determinant as expected. If the
vectors are linearly dependent though, the "parallelogram" we form ends up only having 1 dimension.
The other dimension was compressed to 0, and so we have 0 area, corresponding to the 0 determinant.
This idea generalizes to N dimensions. If we have fewer than N linearly independent vectors, then the
multi-dimensional volume will have at least 1 dimension compressed to 0, giving us O volumen and 0
determinant.

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix M and the associated eigenvectors. State if the inverse of M
exists.

0 1
one[ )

Answer:
Let’s begin by finding the eigenvalues:

det(A — AI) = det < [0_2/1 _31_)LD =0

A(=3-A)+2=0

A24+31+2=0
(A+2)A+1)=0
A=—1,-2
A=—1
0—(—1) 1 01_[1 1]0]eg[1 1]0
2 S3—(=1]0 ] | =2 =2/0 0 0|0

The eigenspace for A = —1 is span{ [_11} }
A=-2
0—(-2) 1 0] 2 1 10 % 1 1/2(0
-2 -3—-(-2) 10 Tl =2 -1

v 2t~ - [- [

The eigenspace for A = —2 is span{ [ 11/2] }

Note that we have no zero eigenvalues, the columns of A are linearly independent, and the determinant
of A is non-zero (evaluate our polynomial in A at A = 0). Any of these are equivalent conditions for
saying that a square matrix is invertible.
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—4 8

(b) M= [—2 4]

(©)

Answer:
Let’s begin by finding the eigenvalues:

det(A—)u):detq_z;’1 841}) =0

(—2—2)(8—A)+16=0

A2 —61 =0
A(A—6)=0
A =0,6

x1—2x =0 [xl} [21 [2}
> — — t
X2 =1 X) t 1
. . 2
The eigenspace for A =0 is span{ L] }
A=6:

-2-6 4 |0 | -8 4]0 GE 1 —-1/210
4 8-6|0| | -4 2|0 0O 0 |0

a2 0 {xl]:[t/Z}:[l{Z]t

X2

The eigenspace for A = 6 is span{ F {2} }

Matrix M has linearly dependent columns, therefore the inverse M~ ! does not exist. Note also that M
has an eigenvalue of 0 so that N(M) contains more than just 0. For this reason also M is not invertible.

01
M=l o
Answer:
Let’s begin by finding the eigenvalues:

det(A — AI) = det < [])L _O)J ) =0

Ar=0
A =0(x2)

[ 8 (1) 8 ] cannot be further reduced by G.E.
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a=on=r =[] = [i] = [i]

The eigenspace for A = 0 is span{ [(1)] } Note even though A = 0 is a eigenvalue with multiplicity

2 (occurs as a root twice for the characteristic polynomial), the dimension of its eigenspace is only
1. This shows that the number of linearly independent eigenvectors for a given eigenvalue is not

necessarily equal to the multiplicity, i.e. the number of times that eigenvalue occurs in the characteristic
polynomial.

Matrix M has a zero column (linearly dependent columns), therefore the inverse M~! does not exist.
(d) (PRACTICE)M = [(1) _01] .
Answer: Let’s begin by finding the eigenvalues:

wlt 3 ([ )

From the above equation, we know that the eigenvalues are A =i and A = —i.
For the eigenvalue A = i:

(M—il)X=0
(¢ 1k )
R

We can also perform Gaussian elimination on matrices with imaginary or complex numbers:
—i =10 % 1 —i]0 — X]-iX2=0 — X1 [ t
1 —i|0 0 010 Xy =t x| |1

So the eigenspace is span { {ﬂ }

For the eigenvalue A = —i:

ol

=l

=l

0 —1], [t )25
1o o 1))

0 —1]  [i 0]\. =

([ o]+[o 7)==

[P =1, =

1 i]x_o

i*lOG__J%li
1 7 |0 0 0

The second eigenspace is span { {_11} }

0 . X1 +ixa=0 . x| _ fit
0 Xy =1t X 1
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1 0
(e) (PRACTICE)M = [O 9]

Answer:

Let’s begin by finding the eigenvalues:

1 0 A0 1-2 0
L () R ()
The determinant of a diagonal matrix is the product of the entries.

(1—=2)(9—2)=0

From the above equation, we know that the eigenvalues are A =1 and A = 9.
For the eigenvalue A = 1:

From the second equation in the system, x, = 0, with any solution having the form [

eigenspace is thus span{ Lﬂ }

For the eigenvalue A = 9:

(l)} t fort € R. The

(b 9% e
(b3 e

. . . . 0] .
From the first equation in the system, x; = 0, so any solution must take the form L} t fort € R. The

. . 0
eigenspace is span{ [J }

The matrix is invertible.

3. Eigenvalues and Special Matrices — Visualization
An eigenvector V belonging to a square matrix A is a nonzero vector that satisfies
Av=AV

where A is a scalar known as the eigenvalue corresponding to eigenvector V. Rather than mechanically
compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.
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(a)

(b)

(©)

Does the identity matrix in R” have any eigenvalues A € R? What are the corresponding eigenvectors?
Answer:  Multiplying the identity matrix with any vector in R” produces the same vector, that is,
IX =X = 1-X. Therefore, A = 1. Since X can be any vector in R”, the corresponding eigenvectors are
all vectors in R”.

d 0 0 0
0 4 O 0
Does a diagonal matrix 0 0 ds -~ O] inp R” have any eigenvalues A € R? What are the
(0 0 0 - dy)

corresponding eigenvectors?

Answer: Since the matrix is diagonal, multiplying the diagonal matrix with any standard basis vector
é; produces d;é;, that is, Dé; = d;é;. Therefore, the eigenvalues are the diagonal entries d; of D, and the
corresponding eigenvector associated with A = d; is the standard basis vector é;.

Conceptually, does a rotation matrix in R? by angle 6 have any eigenvalues A € R? For which angles
is this the case?

Answer: In a conceptual sense, there are three cases:

Rotation by 0°: (more accurately, any integer multiple of 360°), which yields a rotation matrix R =1:
This will have one eigenvalue of +1 because it doesn’t affect any vector (RX = X). The eigenspace
associated with it is R?.

Rotation by 180°: (more accurately, any angle of 180° +n - 360° for integer n), which yields a rota-
tion matrix R = —I: This will have one eigenvalue of — 1 because it “flips” any vector (RX = —X).
The eigenspace associated with it is R2.

Any other rotation: there aren’t any real eigenvalues. The reason is, if there were any real eigenvalue
A € R for a non-trivial rotation matrix, it means that we can get R¥ = AX for some ¥ # 0, which
means that by rotating a vector, we scaled it. This is a contradiction (again, unless R =I). Refer
to Figure 1 for a visualization.

A

A\

~

Figure 1: Rotation will never scale any non-zero vector (by a real number) unless it is rotation by an integer
multiple of 360° (identity matrix) or the rotation angle is 8 = 180° +n - 360° for any integer n (—I).
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(d)

(e)

®

(PRACTICE) Now let us mechanically compute the eigenvalues of the rotation matrix in R?. Does it
agree with our ﬁndings above? Asa refresher, the rotation matrix R has the following form:

_ [ cos(@) —sin(0) ]
sin(@)  cos(0)

Answer: Using our known determinant formula for 2x2 matrices det(A) = ad — bc we can compute
the characteristic polynomial

cos(B)—A  —sin(0)

det(R—lI):det{ sin(@)  cos(8) — 2

} = cos(0)? +sin(8)* —2cos(B)A+A% = 0

From here we can first simplify 1 = COS(G)2 + sin(O)2 and then use the quadratic formula to attain the
two possible A values.

A =cos(0) +1/cos(0)* —1 =cos(0) £iy/1 —cos(0)* = cos(0) +i\/sin(0)*

In exponential phase notation we can write the two eigenvalues more concisely: A = ™0

Does the reflection matrix T across the x-axis in R?>*? have any eigenvalues A € R?

1 0
Lo 4]
Answer: Yes, both +1 and —1. Mechanically, we could go through the methods we have learned
for attaining a characteristic polynomial from det(7 —AI) = (1 —A)(—1—A4) — (0)(0) and recalling

our eigenvalues are the roots of this polynomial (the values where this polynomial is zero). This works
because matrix 7' — A1 only has a nonempty null space when its determinant is zero!

det(T —Al)=A>—-1=0 — A==l

Conceptually, we can reason that a vector along the x-axis will be unaffected by T (in this case
A = +1), where as a vector along the y-axis gets perfectly flipped by T (in this case A = —1)

NOTE: A 2 x 2 reflection matrix always has A = +1, REGARDLESS of the axis of reflection. Why?
Reflecting any vector that is on the reflection axis will not affect it (eigenvalue +1). Reflecting any
vector orthogonal (perpendicular) to the reflection axis will just “flip it/negate it” (eigenvalue —1). In
other words, the set of vectors that lie along the axis of reflection is the eigenspace associated with the
eigenvalue +1 and the set of vectors orthogonal to the axis of reflection is the eigenspace associated
with the eigenvalue —1.

If a matrix M has an eigenvalue A = 0, what does this say about its null space? What does this say
about the solutions of the system of linear equations MX = b?

Answer: N(A) is not just 0 as we have some ¥ # 0 satisfying AV = A¥. Another way we can state
this is that dim(N(A)) > 0.

Thus we can imagine if MX = b has a solution then M(X+V) = b also solves the system, hence there
are infinite solutions. Yet we also know that a nonzero null space means M has linearly dependent
columns, so the vector b could lie outside of this span in which case there is no solution.

In summary, there are either infinite or no solutions to the system of equations Mx = b
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(g) (Practice) Does the matrix [(1) O} have any eigenvalues A € R? What are the corresponding eigen-
vectors?
Answer:

Note that the matrix has linearly dependent columns. Therefore, according to part (f), one eigenvalue
is A = 0. The corresponding eigenvector, which is equivalent to the basis vector for the null space, is

1 . . . . . . . 1
{_ J . The other eigenvalue is, by inspection, A = 1 with the corresponding eigenvector {0

] because

1

o ollol =l
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