EECS 16A Designing Information Devices and Systems I
 Fall 2021

1. Steady and Unsteady States

(a) You're given the matrix \mathbf{M} :

$$
\mathbf{M}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

Which generates the next state of a physical system from its previous state: $\vec{x}[k+1]=\mathbf{M} \vec{x}[k]$. Find the eigenspaces associated with the following eigenvalues:
i. $\operatorname{span}\left(\vec{v}_{1}\right)$, associated with $\lambda_{1}=1$
ii. $\operatorname{span}\left(\vec{v}_{2}\right)$, associated with $\lambda_{2}=2$
iii. $\operatorname{span}\left(\vec{v}_{3}\right)$, associated with $\lambda_{3}=\frac{1}{2}$

Answer:
i. $\lambda=1$:

$$
\begin{gathered}
{\left[\begin{array}{l|l}
\mathbf{M}-\mathbf{I} & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{ccc|c}
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\vec{v}_{1}=\alpha\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \alpha \in \mathbb{R}
\end{gathered}
$$

This means that

$$
\operatorname{span}\left\{\vec{v}_{1}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

ii. $\lambda=2$:

$$
\begin{gathered}
{\left[\begin{array}{l|c}
\mathbf{M}-2 \mathbf{I} & \overrightarrow{0}
\end{array}\right]=\left[\begin{array}{ccc|c}
\frac{-3}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\vec{v}_{2}=\beta\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right], \beta \in \mathbb{R}
\end{gathered}
$$

This means that

$$
\operatorname{span}\left\{\vec{v}_{2}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right\}
$$

iii. $\lambda=\frac{1}{2}$:

$$
\begin{gathered}
{\left[\left.\mathbf{M}-\frac{1}{2} \mathbf{I} \right\rvert\, \overrightarrow{0}\right]=\left[\begin{array}{ccc|c}
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & -2 & 0 \\
0 & 0 & \frac{3}{2} & 0
\end{array}\right] \xrightarrow{\text { G.E. }}\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\vec{v}_{3}=\gamma\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \gamma \in \mathbb{R}
\end{gathered}
$$

This means that

$$
\operatorname{span}\left\{\vec{v}_{3}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

(b) Define $\vec{x}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}+\gamma \vec{v}_{3}$, a linear combination of the eigenvectors. For each of the cases in the table, determine if

$$
\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}
$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	$\neq 0$		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	$\neq 0$		

Answer:

$$
\begin{aligned}
\mathbf{M}^{n} \vec{x} & =\mathbf{M}^{n}\left(\alpha \vec{v}_{1}+\beta \vec{v}_{2}+\gamma \vec{v}_{3}\right) \\
& =\alpha \mathbf{M}^{n} \vec{v}_{1}+\beta \mathbf{M}^{n} \vec{v}_{2}+\gamma \mathbf{M}^{n} \vec{v}_{3} \\
& =1^{n} \alpha \vec{v}_{1}+2^{n} \beta \vec{v}_{2}+\left(\frac{1}{2}\right)^{n} \gamma \vec{v}_{3}
\end{aligned}
$$

α	β	γ	Converges?	$\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}$
0	0	$\neq 0$	Yes	$\overrightarrow{0}$
0	$\neq 0$	0	No	-
0	$\neq 0$	$\neq 0$	No	-
$\neq 0$	0	0	Yes	$\alpha \vec{v}_{1}$
$\neq 0$	0	$\neq 0$	Yes	$\alpha \vec{v}_{1}$
$\neq 0$	$\neq 0$	0	No	-
$\neq 0$	$\neq 0$	$\neq 0$	No	-

2. Steady State Reservoir Levels

We have 3 reservoirs: A, B and C. The pumps system between the reservoirs is depicted in Figure 1.

Figure 1: Reservoir pumps system.
(a) Write out the transition matrix \mathbf{T} representing the pumps system.

Answer:

$$
\mathbf{T}=\left[\begin{array}{lll}
0.2 & 0.5 & 0.4 \\
0.4 & 0.3 & 0.3 \\
0.4 & 0.2 & 0.3
\end{array}\right]
$$

(b) You are told that $\lambda_{1}=1, \lambda_{2}=\frac{-\sqrt{2}-1}{10}, \lambda_{3}=\frac{\sqrt{2}-1}{10}$ are the eigenvalues of \mathbf{T}. Find a steady state vector \vec{x}, i.e. a vector such that $T \vec{x}=\vec{x}$.
Answer:
We know $\lambda_{1}=1$ is the eigenvalue corresponding to the steady state eigenvector. Therefore,

$$
\begin{aligned}
T \vec{x} & =1 \vec{x} \\
& =\lambda_{1} \vec{x} \\
\Rightarrow \vec{x} & \in N(\mathbf{T}-1 \cdot \mathbf{I}) \\
\vec{x} & \in N\left(\left[\begin{array}{lll}
0.2 & 0.5 & 0.4 \\
0.4 & 0.3 & 0.3 \\
0.4 & 0.2 & 0.3
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
\vec{x} & \in N\left(\left[\begin{array}{ccc}
-0.8 & 0.5 & 0.4 \\
0.4 & -0.7 & 0.3 \\
0.4 & 0.2 & -0.7
\end{array}\right]\right)
\end{aligned}
$$

In order to row reduce $\mathbf{T}-1 \cdot \mathbf{I}$ we use Gaussian elimination. We also convert to fractions:

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
-\frac{4}{5} & \frac{1}{2} & \frac{2}{5} \\
\frac{2}{5} & -\frac{7}{10} & \frac{3}{10} \\
\frac{2}{5} & \frac{1}{5} & -\frac{7}{10}
\end{array}\right] \stackrel{R_{1} \leftarrow-5 / 4 R_{1}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & -\frac{5}{8} & -\frac{1}{2} \\
\frac{2}{5} & -\frac{7}{10} & \frac{3}{10} \\
\frac{2}{5} & \frac{1}{5} & -\frac{7}{10}
\end{array}\right] \stackrel{R_{2} \leftarrow R_{3} \leftarrow R_{3}-2 / 5 R_{1}-2 / 5 R_{1}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & -\frac{5}{8} & -\frac{1}{2} \\
0 & -\frac{9}{20} & \frac{1}{2} \\
0 & \frac{9}{20} & -\frac{1}{2}
\end{array}\right]} \\
R_{2} \leftrightarrows-20 / 9 R_{2}
\end{array}\left[\begin{array}{ccc}
1 & -\frac{5}{8} & -\frac{1}{2} \\
0 & 1 & -\frac{10}{9} \\
0 & \frac{9}{20} & -\frac{1}{2}
\end{array}\right] \stackrel{R_{3} \leftarrow R_{3}-9 / 20 R_{2}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & -\frac{5}{8} & -\frac{1}{2} \\
0 & 1 & -\frac{10}{9} \\
0 & 0 & 0
\end{array}\right] \stackrel{R_{1} \leftarrow R_{1}+5 / 8 R_{2}}{\Longrightarrow}\left[\begin{array}{ccc}
1 & 0 & -\frac{43}{36} \\
0 & 1 & -\frac{10}{9} \\
0 & 0 & 0
\end{array}\right]\right) .
$$

If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is a vector describing the steady state, then we can set x_{3} to be the free variable. Thus we can write the form any steady state vector should take using the first two equations represented by the row reduced matrix:

$$
\begin{gathered}
x_{1}-\frac{43}{36} x_{3}=0 \\
x_{2}-\frac{10}{9} x_{3}=0 \\
x_{3}=\alpha \in \mathbb{R}
\end{gathered} \quad \Longrightarrow \vec{x}=\left[\begin{array}{c}
\frac{43}{36} \\
\frac{10}{9} \\
1
\end{array}\right] \alpha
$$

(c) What does the magnitude of the other two eigenvalues λ_{2} and λ_{3} say about the steady state behavior of their associated eigenvectors?
Answer: The magnitude of both eigenvalues is less than 1, so in steady state, the components associated with those eigenvectors $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$ will trend toward $\overrightarrow{0}$. Additionally, since $\lambda_{2}<0$, its associated eigenvector will oscillate / flip signs back and forth.
(d) Assuming that you start the pumps with the water levels of the reservoirs at $A_{0}=129, B_{0}=109, C_{0}=0$ (in kiloliters), what would be the steady state water levels (in kiloliters) according to the pumps system described above?

Answer:
From the previous sub-parts we know the steady-state solution should have the form (rescaled for convenience) $\vec{x}_{s s}=\alpha\left[\begin{array}{l}43 \\ 40 \\ 36\end{array}\right]$ for any α.
But after inspecting the transition matrix we recognize that the columns each sum to one, thus we have a conservative system, meaning that the total volume across all three reservoirs $\left(A_{0}+B_{0}+C_{0}\right)$ must remain constant at all iterations. This gives us a sufficient condition to identify α.

So far the sum, with $\alpha=1$ of $\vec{x}_{s s}$ is $43+40+36=119$ (kiloliters), while the initial state starts with $A_{0}+B_{0}+C_{0}=129+109+0=238$ kiloliters. By inspection we see that $\alpha=2$ is the proper rescaling of the steady-state eigenvector to satisfy this condition. Thus

$$
\vec{x}_{s s}=\left[\begin{array}{l}
86 \\
80 \\
72
\end{array}\right]
$$

