EECS 16A Designing Information Devices and Systems I
 Fall 2021

1. Proof Topics: proof, null space, invertibility. Consider a square matrix A. Prove that if \mathbf{A} has a non-trivial nullspace, i.e. if the nullspace of \mathbf{A} contains more than just $\overrightarrow{0}$, then matrix \mathbf{A} is not invertible.
We are given that the nullspace of \mathbf{A} contains a vector other than $\overrightarrow{0}$. Let such a vector be $\vec{y} \neq 0$, where $A \vec{y}=\overrightarrow{0}$. Imagine, for the sake of contradiction, that \mathbf{A} had an inverse \mathbf{A}^{-1}. Then we find that

$$
\begin{array}{rlrl}
& & \vec{y} & =\overrightarrow{0} \\
\Longrightarrow \quad & \left(A^{-1} A\right) \vec{y} & =A^{-1} \overrightarrow{0} \\
\Longrightarrow \quad & \vec{y} & =\overrightarrow{0},
\end{array}
$$

since by the definition of an inverse, $A^{-1} A=\mathbf{I}$.
But we said that $\vec{y} \neq \overrightarrow{0}$, so this is a contradiction! Therefore, our original hypothesis must have been false, so \mathbf{A} cannot have an inverse.

Thus, the matrix \mathbf{A} is not invertible.
2. The Romulan Ruse While scanning parts of the galaxy for alien civilization, the starship USS Enterprise NC-1701D encounters a Romulan starship that is known for advanced cloaking devices.
(a) Concept: Matrix Transformations

The Romulan illusion technology causes a point $\left(x_{0}, y_{0}\right)$ to transform or map to $\left(u_{0}, v_{0}\right)$. Similarly, $\left(x_{1}, y_{1}\right)$ is mapped to $\left(u_{1}, v_{1}\right)$. Figure 1 and Table 1 show two points on a Romulan ship and the corresponding mapped points.

Figure 1: Figure for part (a)

Original Point	Mapped Point
$\left(x_{0}, y_{0}\right)=(500,500)$	$\left(u_{0}, v_{0}\right)=(500,1500)$

$$
\begin{array}{c|c}
\text { Original Point } & \text { Mapped Point } \\
\hline\left(x_{1}, y_{1}\right)=(1000,500) & \left(u_{1}, v_{1}\right)=(1000,1500)
\end{array}
$$

Table 1: Original and Mapped Points

Find a transformation matrix A_{0} such that

$$
\left[\begin{array}{l}
u_{0} \\
v_{0}
\end{array}\right]=\mathbf{A}_{0}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \text {, and }\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]=\mathbf{A}_{0}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] .
$$

(b) Concept: Matrix Transformations

In this scenario, every point on the Romulan ship $\left(x_{m}, y_{m}\right)$ is mapped to $\left(u_{m}, v_{m}\right)$, such that vector $\left[\begin{array}{l}x_{m} \\ y_{m}\end{array}\right]$ is rotated counterclockwise by 30° and then scaled by 2 in the x - and y -directions. This transformation is shown in Figure 2.

Figure 2: Figure for part (b)

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	∞

Table 2: Trigononometric Table

Find a transformation matrix \mathbf{R} such that $\left[\begin{array}{l}u_{m} \\ v_{m}\end{array}\right]=\mathbf{R}\left[\begin{array}{l}x_{m} \\ y_{m}\end{array}\right]$.
Transformation matrix that rotates a vector counterclockwise by 30° is:

$$
\mathbf{R}_{\theta}=\left[\begin{array}{cc}
\cos 30^{\circ} & -\sin 30^{\circ} \\
\sin 30^{\circ} & \cos 30^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] .
$$

Transformation matrix that rotates a vector counterclockwise by 30° and scales by 2 is:

$$
\mathbf{R}=2 \mathbf{R}_{\theta}=\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right] .
$$

Alternatively, the transformation matrix can be written as:

$$
\mathbf{R}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
\cos 30^{\circ} & -\sin 30^{\circ} \\
\sin 30^{\circ} & \cos 30^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right] .
$$

The Romulan ship has launched a probe into space and the Enterprise is trying to destroy the probe by firing a photon torpedo along a straight line from point $(0,0)$ towards the probe.
(c) Concept: Gaussian Elimination, Systems of Equations

The Romulan generals found a clever way to hide the probe by transforming (mapping) its position with a cloaking (transformation) matrix \mathbf{A}_{p} :

$$
\mathbf{A}_{p}=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] .
$$

They positioned the probe at $\left(x_{p}, y_{p}\right)$ so that it maps to $\left(u_{p}, v_{p}\right)=(0,0)$, where $\left[\begin{array}{l}u_{p} \\ v_{p}\end{array}\right]=\mathbf{A}_{p}\left[\begin{array}{l}x_{p} \\ y_{p}\end{array}\right]$.
This scenario is shown in Figure 3. The initial position of the torpedo is $(0,0)$ and the torpedo cannot be fired on its initial position! Impressive trick indeed!

Figure 3: Figure for part (c)

Find the possible positions of the probe $\left(x_{p}, y_{p}\right)$ so that $\left(u_{p}, v_{p}\right)=(0,0)$.

We need to solve for

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So essentially we need to find the nullspace of the matrix \mathbf{A}_{p}. Using Gaussian Elimination on the augmented matrix, we have:

$$
\left[\begin{array}{ll|l}
1 & 3 & 0 \\
2 & 6 & 0
\end{array}\right] \quad \Rightarrow\left[\begin{array}{ll|l}
1 & 3 & 0 \\
1 & 3 & 0
\end{array}\right] \quad \Rightarrow\left[\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow x_{p}+3 y_{p}=0 \Rightarrow x_{p}=-3 y_{p}
$$

The solution is $\alpha\left[\begin{array}{c}-3 \\ 1\end{array}\right]$, where α is $\{\alpha \in \mathbb{R}\}$. So $\left[\begin{array}{l}x_{p} \\ y_{p}\end{array}\right]$ should be in the span of $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
Alternatively, any point $\left(x_{p}, y_{p}\right)$ that is on the line: $x=-3 y$, would represent all possible positions of the probe.
(d) Concept: Eigenspaces/Eigenvectors/Eigenvalues

It turns out the Romulan engineers were not as smart the Enterprise engineers. Their calculations did not work out and they positioned the probe at $\left(x_{q}, y_{q}\right)$ such that the cloaking (transformation) matrix, \mathbf{A}_{p}, mapped it to $\left(u_{q}, v_{q}\right)$, where

$$
\left[\begin{array}{l}
u_{q} \\
v_{q}
\end{array}\right]=\mathbf{A}_{p}\left[\begin{array}{l}
x_{q} \\
y_{q}
\end{array}\right], \text { and } \mathbf{A}_{p}=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] .
$$

As a result, the torpedo while traveling along a straight line from $(0,0)$ to $\left(u_{q}, v_{q}\right)$, hit the probe at $\left(x_{q}, y_{q}\right)$ on the way!
The scenario is shown in Figure 4. For the torpedo to hit the probe, we must have $\left[\begin{array}{l}u_{q} \\ v_{q}\end{array}\right]=\lambda\left[\begin{array}{l}x_{q} \\ y_{q}\end{array}\right]$, where λ

Figure 4: Figure for part (d) is a real number.
Find the possible positions of the probe $\left(x_{q}, y_{q}\right)$ so that $\left(u_{q}, v_{q}\right)=\left(\lambda x_{q}, \lambda y_{q}\right)$. Remember that the torpedo cannot be fired on its initial position $(0,0)$. This means that $\left(u_{q}, v_{q}\right)=\left(\lambda x_{q}, \lambda y_{q}\right)$ cannot be $(0,0)$.
We need to solve for $\mathbf{A}_{p}\left[\begin{array}{l}x_{q} \\ y_{q}\end{array}\right]=\lambda\left[\begin{array}{l}x_{q} \\ y_{q}\end{array}\right]$, i.e. we need to find the eigenvectors of \mathbf{A}_{p}. Let's start by finding the eigenvalues:

$$
\begin{array}{r}
\operatorname{det}\left\{\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right\}=0 \\
\operatorname{det}\left\{\left[\begin{array}{cc}
1-\lambda & 3 \\
2 & 6-\lambda
\end{array}\right]\right\}=0
\end{array}
$$

So we have the characteristic polynomial:

$$
\begin{array}{r}
(1-\lambda)(6-\lambda)-(3)(2)=0 \\
\Rightarrow \lambda=0,7
\end{array}
$$

Using $\lambda=0$, we have: $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}x_{q} \\ y_{q}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ which will map $\left(x_{q}, y_{q}\right)$ to the original position of the torpedo. The torpedo cannot be fired on its original position. So $\lambda=0$ will not provide a valid solution.
Using $\lambda=7$, we have:

$$
\left(\mathbf{A}_{\mathbf{p}}-7 \mathbf{I}\right)\left[\begin{array}{l}
x_{q} \\
y_{q}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow=\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]-7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x_{q} \\
y_{q}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
-6 & 3 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{q} \\
y_{q}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Using Gaussian Elimination on the augmented matrix form, we have

$$
\left[\begin{array}{cc|c}
-6 & 3 & 0 \\
2 & -1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow 2 x_{q}-y_{q}=0 \Rightarrow y_{q}=2 x_{q}
$$

The solution is $\alpha\left[\begin{array}{l}1 \\ 2\end{array}\right]$, where α is $\{\alpha \in \mathbb{R}: \alpha \neq 0\}$. So $\left[\begin{array}{l}x_{q} \\ y_{q}\end{array}\right]$ should be in the span of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Alternatively, any point $\left(x_{q}, y_{q}\right)$ that is on the line: $y=2 x$, excluding $(0,0)$, would represent all possible positions of the probe.

