EECS 16A Designing Information Devices and Systems I
 Fall 2021

1. Series and Parallel Combinations

For the resistor network shown below, find an equivalent resistance between the terminals A and B using the resistor combination rules for series and parallel resistors.

2. Superposition

For the following circuits:
i. Use the superposition theorem to solve for the voltages across the resistors. First, redraw the circuits with just one source (while zero-ing the other source). Then, for each circuit solve for each element voltage. Finally, sum the voltages at each node.
(a)

Answer: Turning on only $V_{S_{1}}$ and zeroing the current source ($I_{S_{1}}=0 \mathrm{~A}$ so an open circuit), we have the following circuit and voltages across the resistors. Notice that because we have an open circuit, R_{3} no longer contributes to the circuit network, and we are left with a classic resistive voltage divider.

Then turning only $I_{S_{1}}$ and zeroing the voltage source ($V_{S_{1}}=0 \mathrm{~V}$ so a closed circuit), we have the following circuit and voltages:

The current going through R_{3} is simply $I_{S_{1}}$ and then splits between R_{1} and R_{2}. Let us focus on the R_{1} and R_{2} components.

We know that $V_{R_{1}}=I_{1} R_{1}$ and $V_{R_{2}}=I_{2} R_{2}$. We also know $I_{R_{2}}+I_{S_{1}}=I_{R_{1}}$ and $V_{R_{1}}=-V_{R_{2}}$. If we solve this system, we find

$$
I_{1}=\frac{R_{2}}{R_{1}+R_{2}} I_{S_{1}}
$$

$$
\begin{gathered}
I_{2}=-\frac{R_{1}}{R_{1}+R_{2}} I_{S_{1}} \\
V_{R_{1}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{S_{1}} \\
V_{R_{2}}=-\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{S_{1}} \\
V_{R_{3}}=I_{S_{1}} R_{3}
\end{gathered}
$$

Using superposition we can sum up the contributions from both $V_{S_{1}}$ and $I_{S_{1}}$ to get:

$$
\begin{gathered}
V_{R_{1}}=\frac{R_{1}}{R_{1}+R_{2}} V_{S_{1}}+\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{S_{1}} \\
V_{R_{2}}=V_{S_{1}}-V_{R_{1}}=\frac{R_{2}}{R_{1}+R_{2}} V_{S_{1}}-\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{S_{1}} \\
V_{R_{3}}=I_{S_{1}} R_{3}
\end{gathered}
$$

(b)

Answer:

i. While we could apply the algorithm we have learned in class, let's see if there's a way to find the answer quicker than before. We're looking for the voltage across the resistor, which could be found quickly using Ohm's law if we knew the current. If we were to apply KCL at the node at the top of the circuit, one source is coming in, the other source is leaving, and the current through the resistor is leaving. From KCL, we then know $i_{R_{1}}=I_{S_{1}}-I_{S_{2}}$. Applying Ohm's Law we find:

$$
V_{R_{1}}=\left(I_{S_{1}}-I_{S_{2}}\right) R_{1}
$$

We could also solve this using superposition. Turning on $I_{S_{1}}$ gives $V_{R_{1}}=I_{S_{1}} R_{1}$. Turning on $I_{S_{2}}$ gives $V_{R_{1}}=-I_{S_{2}} R_{1}$. Finally, the total $V_{R_{1}}$ is the sum of the individual $V_{R_{1}}$'s or

$$
V_{R_{1}}=\left(I_{S_{1}}-I_{S_{2}}\right) R_{1}
$$

(c) (PRACTICE)

Answer:
i. Once again, we could apply the circuit analysis algorithm or find the answer directly. Notice the circuit only has one loop, so we can use KVL to find the voltage across the resistor.

$$
V_{R_{1}}=V_{S_{1}}-V_{S_{2}}
$$

We could also solve with superposition. Turning on $V_{S_{1}}$ gives $V_{R_{1}}=V_{S_{1}}$. Turning on $V_{S_{2}}$ gives $V_{R_{1}}=-V_{S_{2}}$. The overall voltage is then the sum.

$$
V_{R_{1}}=V_{S_{1}}-V_{S_{2}}
$$

3. Thevenin and Norton Equivalence

The general Thévenin and Norton equivalents are shown below:

Find the Thévenin and Norton equivalents across terminals a and b for the circuit given below.

Answer:

The open circuit voltage across $a b$ is given by Ohm's law:

$$
V_{t h}=5 \mathrm{~A} \times 4 \mathrm{k} \Omega=20 \mathrm{kV}
$$

To find $R_{t h}$, zero out any independent sources (5A source becomes an open). Then, from the open circuit terminals $a b$, find the equivalent resistance of the rest of the circuit. This is just a single resistor.

$$
R_{t h}=4 \mathrm{k} \Omega=R_{n o}
$$

Now to find $I_{n o}$,

$$
I_{n o}=\frac{V_{t h}}{R_{t h}}=\frac{20 \mathrm{kV}}{4 \mathrm{k} \Omega}=5 \mathrm{~A}
$$

