EECS 16A Designing Information Devices and Systems I Fall 2021

1. Op-Amp Rules

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{S S}=-V_{D D}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^{+} and $\left.I^{-}\right)$? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?
(b) Suppose we add a resistor of value R_{L} between $u_{\text {out }}$ and ground. What is the value of $v_{\text {out }}$? Does your answer depend on R_{L} ? In other words, how does R_{L} affect $A v_{\mathrm{C}}$? What are the implications of this with respect to using op-amps in circuit design?
For the rest of the problem, consider the following op-amp circuit in negative feedback:

(c) Assuming that this is an ideal op-amp, what is $v_{\text {out }}$?
(d) Draw the equivalent circuit for this op-amp and calculate $v_{\text {out }}$ in terms of A, $v_{i n}$, and R_{L} for the circuit in negative feedback. Does $v_{\text {out }}$ depend on R_{L} ? What is $v_{\text {out }}$ in the limit as $A \rightarrow \infty$?

2. Modular Circuit Buffer

Let's try designing circuits that perform a set of mathematical operations using op-amps. While voltage dividers on their own cannot be combined without altering their behavior, op-amps can preserve their behavior when combined and thus are a perfect tool for modular circuit design. We would like to implement the block diagram shown below:

In other words, create a circuit with two outputs V_{x} and V_{y}, where $V_{x}=\frac{1}{2} V_{\text {in }}$ and $V_{y}=\frac{1}{3} V_{x}=\frac{1}{6} V_{\text {in }}$.
(a) Draw two voltage dividers, one for each operation (the $1 / 2$ and $1 / 3$ scalings). What relationships hold for the resistor values for the $1 / 2$ divider, and for the resistor values for the $1 / 3$ divider?
Answer: Recall our voltage divider consists of $V_{\text {in }}$ connected to two resistors $\left(R_{1}, R_{2}\right)$ in series with the output voltage between ground and the central node. This yields the formula

$$
V_{\text {out }}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{\text {in }} .
$$

For the $1 / 2$ operation (V_{x} output) we recognize

$$
\frac{1}{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \quad \longrightarrow \quad R_{1}+R_{2}=2 R_{2} \quad \longrightarrow \quad R_{1}=R_{2} \equiv R_{x}
$$

For the $1 / 3$ operation (V_{y} output) we recognize

$$
\frac{1}{3}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \quad \longrightarrow \quad R_{1}+R_{2}=3 R_{2} \quad \longrightarrow \quad \frac{R_{1}}{2}=R_{2} \equiv R_{y} .
$$

(b) If you combine the voltage dividers, made in part (a), as shown by the block diagram (output of the $1 / 2$ voltage divider becomes the source for the $1 / 3$ voltage divider circuit), do they behave as we hope (meaning $\left.6 V_{\text {in }}=3 V_{x}=V_{y}\right)$?

HINT: The following circuit and formula may be handy:

Answer: Combining the voltage divider circuits yield

To quickly access this combined system, we may identify V_{x} as the result of a new equivalent voltage divider (recognizing the R_{y} resistors in series and that series is in parallel with R_{x}). The load resistor becomes $R_{e q}=\frac{3 R_{x} R_{y}}{R_{x}+3 R_{y}}$. This yields

$$
V_{x}=\left(\frac{R_{e q}}{R_{x}+R_{e q}}\right) V_{\mathrm{in}}=\left(\frac{1}{2+\frac{R_{x}}{3 R_{y}}}\right) V_{\mathrm{in}} \quad V_{y}=\frac{1}{3} V_{x}=\left(\frac{1}{6+\frac{R_{x}}{R_{y}}}\right) V_{\mathrm{in}}
$$

From this stage it is evident that combining our dividers changes their behavior (although they preserve behavior in the limit $R_{y} \gg R_{x}$).
The new values for V_{x}, V_{y} are dependent on values from both dividers, which means they can't be treated independently!
(c) Perhaps we could use an op-amp (in negative-feedback) to achieve our desired behavior. Modify the implementation you tried in part (b) using a negative feedback op-amp in order to achieve the desired V_{x}, V_{y} relations $V_{x}=(1 / 2) V_{\text {in }}$ and $V_{y}=(1 / 3) V_{x}=(1 / 6) V_{\text {in }}$.
HINT: Place the op-amp in between the dividers such that the V_{x} node is an input into the op-amp, while the source of the 2nd divider is the output of the op-amp!
Answer: Use the op-amp as a voltage buffer.
This means we short the op-amp's negative input to its output, since the positive input must now match its output (by the golden rules).

Since no current flow into the positive op-amp input, we've successfully isolated the dividers so they can be used in a modular fashion!

NOTE: The V_{x}, V_{y} outputs from this configuration would change with the addition of a load on either terminal. As a follow-up, think about ways to make each output agnostic to the loads attached!

