EECS 16A Designing Information Devices and Systems I Fall 2021 Discussion 14A

1. Building a classifier

We would like to develop a classifier to classify points based on their distance from the origin.

You are presented with the following data. Each data point $\vec{d_i}^T = [x_i \ y_i]^T$ has the corresponding label $l_i \in \{-1, 1\}$.

x_i	y_i	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 1: *

Labels for data you are classifying

- (a) You want to build a model to understand the data. You first consider a linear model, i.e. you want to find $\alpha, \beta, \gamma \in \mathbb{R}$ such that $l_i \approx \alpha x_i + \beta y_i + \gamma$.
 - Set up a least squares problem to solve for α , β and γ . If this problem is solvable, solve it, i.e. find the best values for α , β , γ . If it is not solvable, justify why.
- (b) Plot the data points in the plot below with axes (x_i, y_i) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x_i	Уi	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 2: *

Labels for data you are classifying

(c) You now consider a model with a quadratic term: $l_i \approx \alpha x_i + \beta x_i^2$ with $\alpha, \beta \in \mathbb{R}$. Read the equation carefully!

Set up a least squares problem to fit the model to the data. If this problem is solvable, solve it, i.e, find the best values for α, β . If it is not solvable, justify why.

x_i	y _i	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 3: *

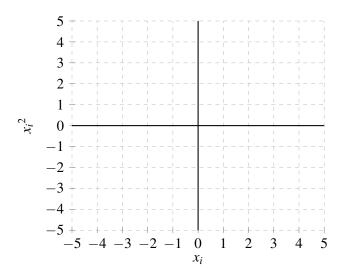
Labels for data you are classifying

(d) Plot the data points in the plot below with axes (x_i, x_i^2) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x_i	Уi	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 4: *

Labels for data you are classifying



(e) Finally you consider the model: $l_i \approx \alpha x_i + \beta x_i^2 + \gamma$, where $\alpha, \beta, \gamma \in \mathbb{R}$. Independent of the work you have done so far, would you expect this model or the model in part (c) (i.e. $l_i \approx \alpha x_i + \beta x_i^2$) to have a smaller error in fitting the data? Explain why.

2. Least Squares with Orthogonal Columns

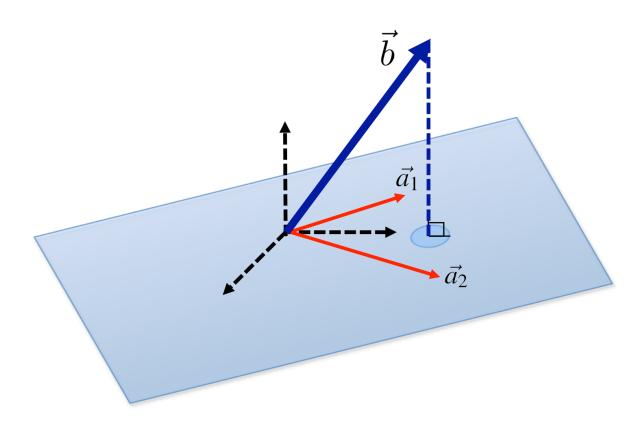
(a) Consider a least squares problem of the form

$$\min_{\vec{x}} \quad \left\| \vec{b} - \mathbf{A}\vec{x} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \mathbf{A}\vec{x} - \vec{b} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \vec{a_1} & \vec{a_2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2$$

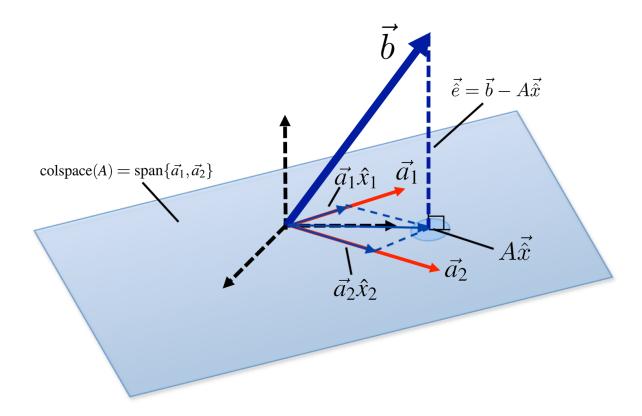
Let the solution be $\vec{\hat{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$.

Label the following elements in the diagram below.

$$\mathrm{span}\{\vec{a_1},\vec{a_2}\}, \qquad \vec{\hat{e}} = \vec{b} - \mathbf{A}\vec{\hat{x}}, \qquad \mathbf{A}\vec{\hat{x}}, \qquad \vec{a_1}\hat{x}_1, \ \vec{a_2}\hat{x}_2, \qquad \mathrm{colspace}(\mathbf{A})$$

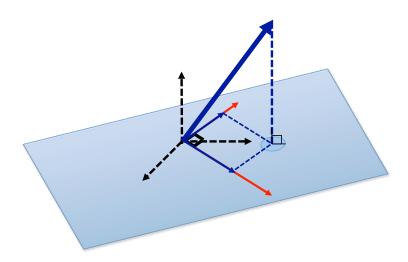


Answer:



(b) We now consider the special case of least squares where the columns of $\bf A$ are orthogonal (illustrated in the figure below). Given that $\vec{\hat{x}} = ({\bf A}^T{\bf A})^{-1}{\bf A}^T\vec{b}$ and $A\vec{\hat{x}} = {\rm proj}_{\bf A}(\vec{b}) = \hat{x_1}\vec{a_1} + \hat{x_2}\vec{a_2}$, show that

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \hat{x_1}\vec{a_1}$$
$$\operatorname{proj}_{\vec{a_2}}(\vec{b}) = \hat{x_2}\vec{a_2}$$



Answer: The projection of \vec{b} onto $\vec{a_1}$ and $\vec{a_2}$ are given by:

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \frac{\langle \vec{a_1}, \vec{b} \rangle}{\|\vec{a_1}\|^2} \vec{a_1} \qquad \operatorname{proj}_{\vec{a_2}}(\vec{b}) = \frac{\langle \vec{a_2}, \vec{b} \rangle}{\|\vec{a_2}\|^2} \vec{a_2}$$

$$\text{Length:} \qquad \frac{\langle \vec{a_1}, \vec{b} \rangle}{\|\vec{a_1}\|} \qquad \qquad \frac{\langle \vec{a_2}, \vec{b} \rangle}{\|\vec{a_2}\|}$$

The least squares solution is given by:

$$\begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} - & \vec{a_1}^T & - \\ - & \vec{a_2}^T & - \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & \\ \vec{a_1} & \vec{a_2} \\ & & \end{vmatrix} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} - & \vec{a_1}^T & - \\ - & \vec{a_2}^T & - \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\|\vec{a_1}\|^2} & 0 \\ 0 & \frac{1}{\|\vec{a_2}\|^2} \end{bmatrix} \begin{bmatrix} - & \vec{a_1}^T & - \\ - & \vec{a_2}^T & - \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\vec{a_1}^T \vec{b}}{\|\vec{a_1}\|^2} \\ \frac{\vec{a_2}^T \vec{b}}{\|\vec{a_2}\|^2} \end{bmatrix}$$

(c) Compute the least squares solution to

$$\min_{\vec{x}} \quad \left\| \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} 1 & 0\\0 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \right\|^2.$$

Answer: Using least squares again,

$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Note that the columns of **A** are orthogonal, so it is much faster to project \vec{b} onto the columns of **A** than use the least squares formula to find $\hat{\vec{x}}$.