EECS 16A Designing Information Devices and Systems I Fall 2021 Discussion 14B

1. Polynomial Fitting

Let's try an example. Say we know that the output, *y*, is a quartic polynomial in *x*. This means that we know that *y* and *x* are related as follows:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

We're also given the following observations:

x	у		
0.0	24.0		
0.5	6.61		
1.0	0.0		
1.5	-0.95		
2.0	0.07		
2.5	0.73		
3.0	-0.12		
3.5	-0.83		
4.0	-0.04		
4.5	6.42		

(a) What are the unknowns in this question?=

Answer:

The unknowns are a_0 , a_1 , a_2 , a_3 , and a_4 .

(b) Can you write an equation corresponding to the first observation (x₀, y₀), in terms of a₀, a₁, a₂, a₃, and a₄? What does this equation look like? Is it linear in the unknowns?

Answer:

Plugging (x_0, y_0) into the expression for y in terms of x, we get

$$24 = a_0 + a_1 \cdot 0 + a_2 \cdot 0^2 + a_3 \cdot 0^3 + a_4 \cdot 0^4$$

You can see that this equation is linear in a_0 , a_1 , a_2 , a_3 , and a_4 .

(c) Now, write a system of equations in terms of a_0 , a_1 , a_2 , a_3 , and a_4 using *all of the observations*. Answer:

Write the next equation using the second observation. You will now get:

$$6.61 = a_0 + a_1 \cdot (0.5) + a_2 \cdot (0.5)^2 + a_3 \cdot (0.5)^3 + a_4 \cdot (0.5)^4$$

And for the third:

$$0.0 = a_0 + a_1 \cdot (1) + a_2 \cdot 1^2 + a_3 \cdot 1^3 + a_4 \cdot 1^4$$

UCB EECS 16A, Fall 2021, Discussion 14B, All Rights Reserved. This may not be publicly shared without explicit permission.

Do you see a pattern? Let's write the entire system of equations in terms of a matrix now.

[1	0	0^{2}	0^{3}	04 7		24
1	0.5	$(0.5)^2$	$(0.5)^3$	$(0.5)^4$		6.61
1	1	12	1 ³	14	[a]	0.0
1	1.5	$(1.5)^2$	$(1.5)^3$	$(1.5)^4$	u_0	-0.95
1	2	2^{2}	2 ³	24	a_1	0.07
1	2.5	$(2.5)^2$	$(2.5)^3$	$(2.5)^4$	$ a_2 =$	0.73
1	3	32	3 ³	34	<i>a</i> ₃	-0.12
1	3.5	$(3.5)^2$	$(3.5)^3$	$(3.5)^4$		-0.83
1	4	4 ²	4 ³	4 ⁴		-0.04
1	4.5	$(4.5)^2$	$(4.5)^3$	$(4.5)^4$		6.42

(d) Finally, solve for a_0 , a_1 , a_2 , a_3 , and a_4 using IPython or any method you like. You have now found the quartic polynomial that best fits the data!

Answer:

Let **D** be the big matrix from the previous part.

$$\vec{a} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \vec{y} = \begin{bmatrix} 24.00958042 \\ -49.99515152 \\ 35.0039627 \\ -9.99561772 \\ 0.99841492 \end{bmatrix}$$

It turns out that the actual parameters for the polynomial equation were:

$$\vec{a} = \begin{bmatrix} 24 \\ -50 \\ 35 \\ -10 \\ 1 \end{bmatrix}$$

(Remember that our observations were noisy.)

Therefore, we have actually done pretty well with the least squares estimate!

2. Orthogonal Subspaces

Two vectors are \vec{x} and \vec{y} are said to be orthogonal if their inner product is zero. That is $\langle \vec{x}, \vec{y} \rangle = 0$.

Two subspaces S_1 and S_2 of \mathbb{R}^N are said to be orthogonal if all vectors in S_1 are orthogonal to all vectors in S_2 . That is,

$$\langle \vec{v_1}, \vec{v_2} \rangle = 0 \ \forall \vec{v_1} \in \mathbb{S}_1, \vec{v_2} \in \mathbb{S}_2.$$

(a) Recall that the *column space* of an *M*×*N* matrix **A** is the subspace spanned by the columns of **A** and that the *null space* of **A** is the subspace of all vectors v such that Av = 0.
Prove that for any matrix **A**, the column space of **A**^T and null space of **A** are orthogonal subspaces. This can be denoted by Col(**A**^T) ⊥ Null(**A**) ∀**A** ∈ ℝ^{M×N}. Hint: Use the row interpretation of matrix multiplication.

Answer:

First, we denote the rows of **A** as $\vec{a}_1^T, \vec{a}_2^T, \ldots, \vec{a}_M^T$. Now consider any vector $\vec{v} \in \text{Null}(\mathbf{A})$ which means that $\mathbf{A}\vec{v} = \vec{0}$. Note that matrix multiplication can be viewed as many inner products between the rows of **A** and the vector \vec{v} .

$$\mathbf{A}\vec{v} = \begin{bmatrix} \langle \vec{a}_1, \vec{v} \rangle \\ \langle \vec{a}_2, \vec{v} \rangle \\ \vdots \\ \langle \vec{a}_M, \vec{v} \rangle \end{bmatrix} = \vec{0}$$

Therefore, any vector $\vec{v} \in \text{Null}(\mathbf{A})$ is orthogonal to all rows of \mathbf{A} . From the linearity of the inner product, it follows that \vec{v} is orthogonal to any linear combination of the rows of \mathbf{A} and thus, any vector in Null(\mathbf{A}) is orthogonal to any vector in Col(\mathbf{A}^T), proving that Col(\mathbf{A}^T) \perp Null(\mathbf{A}) $\forall \mathbf{A} \in \mathbb{R}^{M \times N}$.

(b) Now prove that for any matrix **A**, the column space and null space of \mathbf{A}^T are orthogonal subspaces. This can be denoted by $\operatorname{Col}(\mathbf{A}) \perp \operatorname{Null}(\mathbf{A}^T) \ \forall \mathbf{A} \in \mathbb{R}^{M \times N}$.

Answer:

We can define a new matrix $\mathbf{B} \triangleq \mathbf{A}^T$ and denote its rows as $\vec{b}_1^T, \vec{b}_2^T, \dots, \vec{b}_N^T$. Using the same steps as in part (a), we can conclude that $\operatorname{Col}(\mathbf{B}^T) \perp \operatorname{Null}(\mathbf{B}) \forall \mathbf{B} \in \mathbb{R}^{N \times M}$. Changing **B** back to \mathbf{A}^T yields $\operatorname{Col}(\mathbf{A}) \perp \operatorname{Null}(\mathbf{A}^T) \forall \mathbf{A} \in \mathbb{R}^{M \times N}$, which is what we wanted to prove.