EECS 16A Designing Information Devices and Systems I

1. Visualizing Span

We are given a point \vec{c} that we want to get to, but we can only move in two directions: \vec{a} and \vec{b}. We know that to get to \vec{c}, we can travel along \vec{a} for some amount α, then change direction, and travel along \vec{b} for some amount β. We want to find these two scalars α and β, such that we reach point \vec{c}. That is, $\alpha \vec{a}+\beta \vec{b}=\vec{c}$.

(a) First, consider the case where $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{y}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $\vec{z}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$. Draw these vectors on a sheet of paper.
(b) We want to find the two scalars α and β, such that by moving α along \vec{x} and β along \vec{y} so that we can reach \vec{z}. Write a system of equations to find α and β in matrix form.
(c) Solve for α, β.

2. Span basics

(a) What is span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$?
(b) Is $\left[\begin{array}{l}5 \\ 5 \\ 0\end{array}\right]$ in span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$?
(c) What is a possible choice for \vec{v} that would make span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \vec{v}\right\}=\mathbb{R}^{3}$?
(d) For what values of b_{1}, b_{2}, b_{3} is the following system of linear equations consistent? ("Consistent" means there is at least one solution.)

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
0 & 0
\end{array}\right] \vec{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

3. Proofs

Definition: A set of vectors $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}\right\}$ is linearly dependent if there exists constants $c_{1}, c_{2}, \ldots c_{n}$ such that $\sum_{i=1}^{i=n} c_{i} \vec{v}_{i}=\overrightarrow{0}$ and at least one c_{i} is non-zero.
This condition intuitively states that it is possible to express any vector from the set in terms of the others.
(a) Suppose for some non-zero vector $\vec{x}, \mathbf{A} \vec{x}=\overrightarrow{0}$. Prove that the columns of \mathbf{A} are linearly dependent.
(b) For $\mathbf{A} \in \mathbb{R}^{m \times n}$, suppose there exist two unique vectors \vec{x}_{1} and \vec{x}_{2} that both satisfy $\mathbf{A} \vec{x}=\vec{b}$, that is, $\mathbf{A} \vec{x}_{1}=\vec{b}$ and $\mathbf{A} \vec{x}_{2}=\vec{b}$. Prove that the columns of \mathbf{A} are linearly dependent.
(c) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix for which there exists a non-zero $\vec{y} \in \mathbb{R}^{n}$ such that $\mathbf{A} \vec{y}=\overrightarrow{0}$. Let $\vec{b} \in \mathbb{R}^{m}$ be some non zero vector. Show that if there is one solution to the system of equations $\mathbf{A} \vec{x}=\vec{b}$, then there are infinitely many solutions.

