EECS 16A Designing Information Devices and Systems I

1. Mechanical Inverses

For each sub-part below, determine whether or not the inverse of \mathbf{A} exists. If it exists, compute the inverse using Gauss-Jordan method.
(a) $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$
(b) $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
(c) $\mathbf{A}=\left[\begin{array}{ccc}1 & 5 & 3 \\ 2 & -2 & 4\end{array}\right]$
(d) $\mathbf{A}=\left[\begin{array}{llc}5 & 5 & 15 \\ 2 & 2 & 4 \\ 1 & 1 & 4\end{array}\right]$

2. Identifying a Subspace: Proof

Is the set

$$
V=\left\{\vec{v} \left\lvert\, \vec{v}=c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+d\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right., \text { where } c, d \in \mathbb{R}\right\}
$$

a subspace of \mathbb{R}^{3} ? Why/why not?

3. Exploring Column Spaces and Null Spaces

- The column space is the span of the column vectors of the matrix.
- The null space is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:
i. What is the column space of \mathbf{A} ? What is its dimension?
ii. What is the null space of \mathbf{A} ? What is its dimension?
iii. Are the column spaces of the row reduced matrix \mathbf{A} and the original matrix \mathbf{A} the same?
iv. Do the columns of \mathbf{A} span \mathbb{R}^{2} ? Do they form a basis for \mathbb{R}^{2} ? Why or why not?
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}-2 & 4 \\ 3 & -6\end{array}\right]$
(e) $\left[\begin{array}{cccc}1 & -1 & -2 & -4 \\ 1 & 1 & 3 & -3\end{array}\right]$

4. Exploring Dimension, Linear Independence, and Basis

In this problem, we are going to talk about the connections between several concepts we have learned about in linear algebra - linear independence, dimension of a vector space/subspace, and basis.
Let's consider the vector space \mathbb{R}^{k} and a set of n vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ in \mathbb{R}^{k}.
(a) For the first part of the problem, let $k>n . \operatorname{Can}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{k} ? Why/why not? What conditions would we need?
(b) Let $k=n$. Can $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{k} ? Why/why not? What conditions would we need?
(c) Now, let $k<n$. Can $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ form a basis for \mathbb{R}^{k} ? What vector space could they form a basis for?
Hint: Think about whether the vectors can be linearly independent.

