EECS 16A Designing Information Devices and Systems I

Fall 2021

Recall from lecture the way to compute a determinant of any 2×2 matrix is by using the following formula:

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \operatorname{det}(\mathbf{A})=a d-b c
$$

1. Mechanical Determinants

(a) Compute the determinant of $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.
(b) Compute the determinant of $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$.
(c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain intuitively why the determinant of a matrix with linearly dependent column vectors is always 0 .

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix \mathbf{M} and the associated eigenvectors. State if the inverse of \mathbf{M} exists.
(a) $\mathbf{M}=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$
(b) $\mathbf{M}=\left[\begin{array}{ll}-2 & 4 \\ -4 & 8\end{array}\right]$
(c) $\mathbf{M}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
(d) (PRACTICE) $\mathbf{M}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(e) $\left(\right.$ PRACTICE) $\mathbf{M}=\left[\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right]$

3. Eigenvalues and Special Matrices - Visualization

An eigenvector \vec{v} belonging to a square matrix \mathbf{A} is a nonzero vector that satisfies

$$
\mathbf{A} \vec{v}=\lambda \vec{v}
$$

where λ is a scalar known as the eigenvalue corresponding to eigenvector \vec{v}. Rather than mechanically compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.
(a) Does the identity matrix in \mathbb{R}^{n} have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
(b) Does a diagonal matrix $\left[\begin{array}{ccccc}d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ 0 & 0 & d_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_{n}\end{array}\right]$ in \mathbb{R}^{n} have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
(c) Conceptually, does a rotation matrix in \mathbb{R}^{2} by angle θ have any eigenvalues $\lambda \in \mathbb{R}$? For which angles is this the case?
(d) (PRACTICE) Now let us mechanically compute the eigenvalues of the rotation matrix in \mathbb{R}^{2}. Does it agree with our findings above? As a refresher, the rotation matrix \mathbf{R} has the following form:

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

(e) Does the reflection matrix \mathbf{T} across the x -axis in $\mathbb{R}^{2 \times 2}$ have any eigenvalues $\lambda \in \mathbb{R}$?

$$
\mathbf{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(f) If a matrix \mathbf{M} has an eigenvalue $\lambda=0$, what does this say about its null space? What does this say about the solutions of the system of linear equations $\mathbf{M} \vec{x}=\vec{b}$?
(g) (Practice) Does the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?

