EECS 16A Designing Information Devices and Systems I Fall 2021 Discussion 4B

Recall from lecture the way to compute a determinant of any 2×2 matrix is by using the following formula:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \det(\mathbf{A}) = ad - bc$$

1. Mechanical Determinants

- (a) Compute the determinant of $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- (b) Compute the determinant of $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$.
- (c) We know that the determinant of a matrix represents the multi-dimensional volume formed by the column vectors. Explain intuitively why the determinant of a matrix with linearly dependent column vectors is always 0.

2. Mechanical Eigenvalues and Eigenvectors

In each part, find the eigenvalues of the matrix **M** and the associated eigenvectors. State if the inverse of **M** exists.

(a)
$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

(b) $\mathbf{M} = \begin{bmatrix} -2 & 4 \\ -4 & 8 \end{bmatrix}$
(c) $\mathbf{M} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
(d) (**PRACTICE**) $\mathbf{M} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
(e) (**PRACTICE**) $\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix}$

UCB EECS 16A, Fall 2021, Discussion 4B, All Rights Reserved. This may not be publicly shared without explicit permission.

3. Eigenvalues and Special Matrices – Visualization

An eigenvector \vec{v} belonging to a square matrix **A** is a nonzero vector that satisfies

 $A\vec{v} = \lambda\vec{v}$

where λ is a scalar known as the **eigenvalue** corresponding to eigenvector \vec{v} . Rather than mechanically compute the eigenvalues and eigenvectors, answer each part here by reasoning about the matrix at hand.

- (a) Does the identity matrix in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?
- (b) Does a diagonal matrix $\begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{bmatrix}$ in \mathbb{R}^n have any eigenvalues $\lambda \in \mathbb{R}$? What are the

corresponding eigenvectors?

- (c) Conceptually, does a rotation matrix in \mathbb{R}^2 by angle θ have any eigenvalues $\lambda \in \mathbb{R}$? For which angles is this the case?
- (d) (**PRACTICE**) Now let us mechanically compute the eigenvalues of the rotation matrix in \mathbb{R}^2 . Does it agree with our findings above? As a refresher, the rotation matrix **R** has the following form:

$$\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

(e) Does the reflection matrix **T** across the x-axis in $\mathbb{R}^{2\times 2}$ have any eigenvalues $\lambda \in \mathbb{R}$?

$$\mathbf{T} = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

- (f) If a matrix **M** has an eigenvalue $\lambda = 0$, what does this say about its null space? What does this say about the solutions of the system of linear equations $\mathbf{M}\vec{x} = \vec{b}$?
- (g) (**Practice**) Does the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ have any eigenvalues $\lambda \in \mathbb{R}$? What are the corresponding eigenvectors?