EECS 16A Designing Information Devices and Systems I

1. Steady and Unsteady States

(a) You're given the matrix \mathbf{M} :

$$
\mathbf{M}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & -2 \\
0 & 0 & 2
\end{array}\right]
$$

Which generates the next state of a physical system from its previous state: $\vec{x}[k+1]=\mathbf{M} \vec{x}[k]$. Find the eigenspaces associated with the following eigenvalues:
i. $\operatorname{span}\left(\vec{v}_{1}\right)$, associated with $\lambda_{1}=1$
ii. $\operatorname{span}\left(\vec{v}_{2}\right)$, associated with $\lambda_{2}=2$
iii. $\operatorname{span}\left(\vec{v}_{3}\right)$, associated with $\lambda_{3}=\frac{1}{2}$
(b) Define $\vec{x}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}+\gamma \vec{v}_{3}$, a linear combination of the eigenvectors. For each of the cases in the table, determine if

$$
\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}
$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim _{n \rightarrow \infty} \mathbf{M}^{n} \vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	$\neq 0$		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	$\neq 0$		

2. Steady State Reservoir Levels

We have 3 reservoirs: A, B and C. The pumps system between the reservoirs is depicted in Figure 1.

Figure 1: Reservoir pumps system.
(a) Write out the transition matrix \mathbf{T} representing the pumps system.
(b) You are told that $\lambda_{1}=1, \lambda_{2}=\frac{-\sqrt{2}-1}{10}, \lambda_{3}=\frac{\sqrt{2}-1}{10}$ are the eigenvalues of \mathbf{T}. Find a steady state vector \vec{x}, i.e. a vector such that $T \vec{x}=\vec{x}$.
(c) What does the magnitude of the other two eigenvalues λ_{2} and λ_{3} say about the steady state behavior of their associated eigenvectors?
(d) Assuming that you start the pumps with the water levels of the reservoirs at $A_{0}=129, B_{0}=109, C_{0}=0$ (in kiloliters), what would be the steady state water levels (in kiloliters) according to the pumps system described above?

