EECS 16A Designing Information Devices and Systems I

1. Voltage Divider

For the circuit below, your goal will be to find the voltage $V_{\text {out }}$ in terms of the resistances R_{1}, R_{2}, and V_{s}, using NVA (Node Voltage Analysis) and Gaussian elimination. The labeling steps (steps 1-4) have already been done for you.

Here is a reminder of the labeling steps followed to get the circuit diagram above:

- Step 1: Select a reference (ground) node. Any node can be chosen for this purpose. We will measure all of the voltages in the rest of the circuit relative to this point.
- Step 2: Label all nodes with voltage set by voltage sources.
- Step 3: Label remaining nodes.
- Step 4: Label element voltages and currents, following Passive Sign Convention.

Our goal is to find $V_{\text {out }}$. In order to do this, we can use NVA to find equations describing our circuit, write our equations in the form $\mathbf{A} \vec{x}=\vec{b}$, and use Guassian elemination to solve for \vec{x}. The following steps will walk you through this process:

Step 5: Write out $\mathbf{A} \vec{x}=\vec{b}$, leaving the entries for \mathbf{A} and \vec{b} blank. Next, fill in the enteries for \vec{x}. Recall that \vec{x} is a vector of your unknown currents and voltages.

Step 6: Write KCL equations for all nodes with unknown voltages. Using these equations, fill in as many linearly indepedent rows in \mathbf{A} and \vec{b} as possible.

Step 7: Write down the IV relationships (Ohm's Law) of each of the non-wire elements. Use these equations to fill in the remaining rows in \mathbf{A} and \vec{b}. (Hint: how many equations do you need to write?)

Step 8: Use Gaussian elimination or substition to solve for $u_{2}=V_{\text {out }}$.

2. KVL and KCL

For the circuit shown below, $V_{s}=5 \mathrm{~V}, R_{1}=R_{2}=4 \mathrm{k} \Omega$, and $R_{3}=R_{4}=2 \mathrm{k} \Omega$.

(a) For the circuit above, write KVL equations for each loop and KCL equations for each node.
(b) Solve for the voltage between A and B using the equations from part (a).

