EECS 16A Designing Information Devices and Systems I

Fall 2021

1. Multiple Inputs To One Op-Amp

(a) For the circuit above, find an expression for v_{o}. (Hint: Use superposition.)
(b) How could you use this circuit to find the sum of different signals, i.e. $V_{s 1}+V_{s 2}$? What about taking the sum and adding multiplying by 2 , i.e. $2\left(V_{s 1}+V_{s 2}\right)$?

2. Capacitive Charge Sharing (from Spring 2020 Midterm 2)

Consider the circuit below with $C_{1}=C_{2}=1 \mu \mathrm{~F}$ and three switches ϕ_{1}, ϕ_{2}. Suppose that initially the switches ϕ_{1} is closed and ϕ_{2} is open such that C_{1} and C_{2} are charged through the corresponding voltage sources $V_{s 1}=1 \mathrm{~V}$ and $V_{s 2}=2 \mathrm{~V}$.

(a) How much charge is on C_{1} and C_{2} ? How much energy is stored in each of the capacitors? What is the total stored energy?
(b) Now suppose that some time later, switch ϕ_{1} opens and switch ϕ_{2} closes. What is the value of voltage u_{1} at steady state?

