EECS 16A Designing Information Devices and Systems I Fall 2021 Discussion 14A

1. Building a classifier

We would like to develop a classifier to classify points based on their distance from the origin.

You are presented with the following data. Each data point $\vec{d}_i^T = [x_i y_i]^T$ has the corresponding label $l_i \in \{-1, 1\}$.

x _i	<i>Yi</i>	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 1: *Labels for data you are classifying

- (a) You want to build a model to understand the data. You first consider a linear model, i.e. you want to find α, β, γ ∈ ℝ such that l_i ≈ αx_i + βy_i + γ.
 Set up a least squares problem to solve for α, β and γ. If this problem is solvable, solve it, i.e. find the best values for α, β, γ. If it is not solvable, justify why.
- (b) Plot the data points in the plot below with axes (x_i, y_i) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x _i	Уi	li
-2	1	-1
-1	1	1
1	1	1
2	1	-1

 Table 2: *

 Labels for data you are classifying

(c) You now consider a model with a quadratic term: $l_i \approx \alpha x_i + \beta x_i^2$ with $\alpha, \beta \in \mathbb{R}$. Read the equation *carefully*!

Set up a least squares problem to fit the model to the data. If this problem is solvable, solve it, i.e, find the best values for α, β . If it is not solvable, justify why.

y_i	l_i
1	-1
1	1
1	1
1	-1
	1 1 1

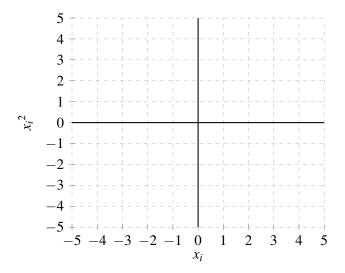
Table 3: * Labels for data you are classifying

(d) Plot the data points in the plot below with axes (x_i, x_i^2) . Is there a straight line such that the data points with a +1 label are on one side and data points with a -1 label are on the other side? Answer yes or no, and if yes, draw the line.

x _i	Уi	l_i
-2	1	-1
-1	1	1
1	1	1
2	1	-1

Table 4: *

Labels for data you are classifying



(e) Finally you consider the model: $l_i \approx \alpha x_i + \beta x_i^2 + \gamma$, where $\alpha, \beta, \gamma \in \mathbb{R}$. Independent of the work you have done so far, would you expect this model or the model in part (c) (i.e. $l_i \approx \alpha x_i + \beta x_i^2$) to have a smaller error in fitting the data? Explain why.

2. Least Squares with Orthogonal Columns

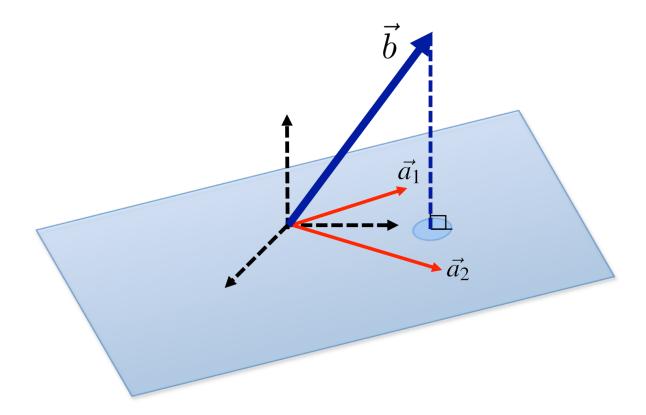
(a) Consider a least squares problem of the form

$$\min_{\vec{x}} \|\vec{b} - \mathbf{A}\vec{x}\|^2 = \min_{\vec{x}} \|\mathbf{A}\vec{x} - \vec{b}\|^2 = \min_{\vec{x}} \|\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix} - \begin{bmatrix}|&|\\a_1 & a_2\\|&|\end{bmatrix} \begin{bmatrix}x_1\\x_2\end{bmatrix} \|^2$$

Let the solution be $\vec{\hat{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$.

Label the following elements in the diagram below.

span{
$$\vec{a_1}, \vec{a_2}$$
}, $\vec{e} = \vec{b} - \mathbf{A}\vec{x}$, $\mathbf{A}\vec{x}$, $\vec{a_1}\hat{x_1}, \vec{a_2}\hat{x_2}$, colspace(**A**)



(b) We now consider the special case of least squares where the columns of **A** are orthogonal (illustrated in the figure below). Given that $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{b}$ and $A\vec{x} = \text{proj}_{\mathbf{A}}(\vec{b}) = \hat{x}_1 \vec{a}_1 + \hat{x}_2 \vec{a}_2$, show that

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \hat{x_1}\vec{a_1}$$
$$\operatorname{proj}_{\vec{a_2}}(\vec{b}) = \hat{x_2}\vec{a_2}$$

(c) Compute the least squares solution to

$$\min_{\vec{x}} \quad \left\| \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \begin{bmatrix} 1 & 0\\0 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} \right\|^2.$$