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1. Polynomial Fitting

Let’s try an example. Say we know that the output, y, is a quartic polynomial in x. This means that we know

that y and x are related as follows:
y=ap +a|x+a2x2 +a3x3 +a4x4
-— s’
We’re also given the following observations:
x y
0.0 | 24.0
0.5 | 6.61 —_—
1.0 | 0.0
1.5 | —-0.95
20| 0.07
25| 0.73
30| —0.12
35| —0.83
4.0 | —0.04 J
45| 642

(a) What are the unknowns in this question?=

2 |
\5-.—. a, ¢ 0¥+ nz,{‘ +0.x” +agY
)

UnRnouns. 04 , 2 82 ®q, 0y

(b) Can you write an equation corresponding to the first observation (xo, o), in terms of ag, a;, a, az, and
a4? What does this equation look like? Is it linear in the unknowns?

(0,0, Q4.0)
4= 105 0, ¢ 3,0 +ay-05ay 0% 0

A4 = a,

(c) Now, write a system of equations in terms of ag, a1, a2, az, and a4 using all of the observations.
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(d) Finally, solve for ag, a;, az, a3, and a4 using IPython or any method you like. You have now found the
quartic polynomial that best fits the data!
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2. Orthogonal Subspaces 7
Two vectors are X and ¥ are said to be orthogonal if their inner product is zero. That is (¥,y) =0. % ° 3 =0

Two subspaces S; and S, of RV are said to be orthogonal if all vectors in S are orthogonal to all vectors in
S». That is,

(71, 7%5) = 0 V¥ €81,7 €S,

(a) Recall that the column space of an M x N matrix A is the subspace spanned by the columns of A and
that the null space of A is the subspace of all vectors v such that Av = 0.

Prove that for any matrix A, the column space of A’ and null space of A are orthogonal subspaces.
This can be denoted by Col(A”) L Null(A) VA € RM*N,
Hint: Use the row interpretation of matrix multiplication.
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(b) Now prove that for any matrix A, the column space and null space of AT are orthogonal subspaces.
This can be denoted by Col(A) L Null(AT) VA € RM*N,
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