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1. Visualizing Span
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We are given a point ¢ that we want to get to, but we can only move in two directions: @ and b. We know
that to get to ¢, we can travel along @ for some amount &, then change direction, and travel along b for some
amount 3. We want to find these two scalars & and 3, such that we reach point ¢. That is, ad + Bb = ¢.
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(a) First, consider the case where X = [i] ;Y= [ﬂ ,and 7= [_22] . Draw these vectors on a sheet of paper. v S P b n | V\l di s R

(b) We want to find the two scalars o and 3, such that by moving o along X and 3 along y so that we can
reach Z. Write a system of equations to find & and f in matrix form.
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2. Span basics
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(c) What is a possible choice for ¥ that would make span{ (2], [1|.,¥} =R3?? \/\/\/
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(d) For what values of by, by, b3 is the following system of linear equations consistent? (“Consistent”
means there is at least one solution.)
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3. Proofs

Definition: A set of vectors {v},V>,...v,} is linearly dependent if there exists constants ¢, ¢y, ... ¢, such = RS
that )i~ ¢;; = 0 and at least one ¢; is non-zero

This condition intuitively states that it is possible to express any vector from the set in terms of the others.

(a) Suppose for some non-zero vector X, AX = 0. Prove that the columns of A are linearly dependent.
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(b) For A € R™", suppose there exist two unique vectors X; and X that both satisfy AX = b, that is,
AX| = b and AX, = b. Prove that the columns of A are linearly dependent.
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(c) Let A € R™*" be a matrix for which there exists a non-zero y € R” such that Ay = 0. Let b € R™ be
some non zero vector. Show that if there is one solution to the system of equations AX = b, then there
are infinitely many solutions.
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