EECS16A Acoustic Positioning System 2
 Last Lab! :)

Insert names here

Announcements!

- This is the last lab!
- Do APS 1 first if you haven't yet (APS 2 can then be done during buffer)
- Course evaluations: link
- APS buffer labs 12/6-12/10 (RRR week)
- Sign up here: tiny.cc/aps-buffer-fa21
- Encouraged to attend a Mon-Wed section
- Good luck on the final!
when you finally finish the lab and this shows up
(2) Profile storage space

2. You have exceeded your profile storage space. Before you can \log off, You have exceeded your profile storage space. Before you can \log off,
you need to move some items from your profile to network or local storage.

Last lab: APS 1

- Cross correlated beacon signals with received signal
- Found the offsets (in samples) between peaks, converted to TDOAs, and calculated distances from each beacon
- What was the missing piece that we needed to calculate distance?

Calculate distances and location

- Hint: we don't have absolute times of arrival for all the beacons, only relative offsets.

3 Beacon Example

- Let beacon centers be: $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
- Time of arrivals: $\tau_{0}, \tau_{1}, \tau_{2}$
- Distance of beacon $m(m=0,1,2)$ is $d_{m}=v \tau_{m}=R_{m}$ (circle radii)
Circle equations: $\left(x-x_{m}\right)^{2}+\left(y-y_{m}\right)^{2}=d^{2}{ }_{m}$

Trilateration

$$
\begin{aligned}
& \left\|\vec{r}-\overrightarrow{a_{0}}\right\|^{2}=d_{0}^{2} \\
& \left\|\vec{r}-\overrightarrow{a_{1}}\right\|^{2}=d_{1}^{2} \\
& \left\|\vec{r}-\overrightarrow{a_{2}}\right\|^{2}=d_{2}^{2}
\end{aligned}
$$

$d_{i}=v_{s} \tau_{i}$

Trilateration

Trilateration
 $\|\vec{r}\|^{2}-2{\overrightarrow{a_{0}}}^{T} \vec{r}+\left\|\overrightarrow{a_{0}}\right\|^{2}=v_{s}^{2} \tau_{0}^{2}$
 $\|\vec{r}\|^{2}-2 \overrightarrow{a_{1}}{ }^{T} \vec{r}+\left\|\overrightarrow{a_{1}}\right\|^{2}=v_{s}^{2} \tau_{1}^{2}$
 $\|\vec{r}\|^{2}-2{\overrightarrow{a_{2}}}^{T} \vec{r}+\left\|\overrightarrow{a_{2}}\right\|^{2}=v_{s}^{2} \tau_{2}^{2}$

Subtracting the first equation yields:
$-2{\overrightarrow{a_{1}}}^{T} \vec{r}+2{\overrightarrow{a_{0}}}^{T} \vec{r}+\left\|\overrightarrow{a_{1}}\right\|^{2}-\left\|\overrightarrow{a_{0}}\right\|^{2}=v_{s}^{2}\left(\tau_{1}^{2}-\tau_{0}^{2}\right)$
$\Longrightarrow 2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{1}}\right)^{T} \vec{r}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{1}}\right\|^{2}+v_{s}^{2}\left(\tau_{1}^{2}-\tau_{0}^{2}\right)$
and,

$$
2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{2}}\right)^{T} \vec{r}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{2}}\right\|^{2}+v_{s}^{2}\left(\tau_{2}^{2}-\tau_{0}^{2}\right)
$$

Trilateration

$$
\begin{aligned}
& 2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{1}}\right)^{T} \vec{r}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{1}}\right\|^{2}+v_{s}^{2}\left(\tau_{1}^{2}-\tau_{0}^{2}\right) \\
& 2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{2}}\right)^{T} \vec{r}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{2}}\right\|^{2}+v_{s}^{2}\left(\tau_{2}^{2}-\tau_{0}^{2}\right)
\end{aligned}
$$

We want to write this in terms of TDOAs and unknowns!

$$
\left(\tau_{i}^{2}-\tau_{0}^{2}\right)=\left(\tau_{i}-\tau_{0}\right)\left(\tau_{i}+\tau_{0}\right)=\left(\tau_{i}-\tau_{0}\right)\left(\tau_{i}-\tau_{0}+2 \tau_{0}\right)=\Delta \tau_{i}\left(\Delta \tau_{i}+2 \tau_{0}\right)
$$

$$
\begin{aligned}
& 2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{1}}\right)^{T} \vec{r}-2\left(v_{s}^{2} \Delta \tau_{1}\right) \tau_{0}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{1}}\right\|^{2}+v_{s}^{2} \Delta \tau_{1}^{2} \\
& 2\left(\overrightarrow{a_{0}}-\overrightarrow{a_{2}}\right)^{T} \vec{r}-2\left(v_{s}^{2} \Delta \tau_{2}\right) \tau_{0}=\left\|\overrightarrow{a_{0}}\right\|^{2}-\left\|\overrightarrow{a_{2}}\right\|^{2}+v_{s}^{2} \Delta \tau_{2}^{2}
\end{aligned}
$$

Trilateration

We can expand our equations by writing our vectors in component form!

$$
\vec{r}=\left[\begin{array}{l}
r_{x} \\
r_{y}
\end{array}\right] \quad \overrightarrow{a_{i}}=\left[\begin{array}{l}
a_{i, x} \\
a_{i, y}
\end{array}\right] \quad \overrightarrow{a_{0}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\Longrightarrow 2 a_{1, x} r_{x}+2 a_{1, y} r_{y}+2 v_{s}^{2} \Delta \tau_{1} \tau_{0}=a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2}$

$$
2 a_{2, x} r_{x}+2 a_{2, y} r_{y}+2 v_{s}^{2} \Delta \tau_{2} \tau_{0}=a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2}
$$

Trilateration

$$
\begin{aligned}
& 2 a_{1, x} r_{x}+2 a_{1, y} r_{y}+2 v_{s}^{2} \Delta \tau_{1} \tau_{0}=a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2} \\
& 2 a_{2, x} r_{x}+2 a_{2, y} r_{y}+2 v_{s}^{2} \Delta \tau_{2} \tau_{0}=a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2}
\end{aligned}
$$

What are our unknowns in this system?

Trilateration

$$
\begin{aligned}
& 2 a_{1, x} r_{x}+2 a_{1, y} r_{y}+2 v_{s}^{2} \Delta \tau_{1} \tau_{0}=a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2} \\
& 2 a_{2, x} r_{x}+2 a_{2, y} r_{y}+2 v_{s}^{2} \Delta \tau_{2} \tau_{0}=a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2}
\end{aligned}
$$

What are our unknowns in this system?

$$
r_{x}, r_{y}, \tau_{0}
$$

Trilateration

$2 a_{1, x} r_{x}+2 a_{1, y} r_{y}+2 v_{s}^{2} \Delta \tau_{1} \tau_{0}=a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2}$
$2 a_{2, x} r_{x}+2 a_{2, y} r_{y}+2 v_{s}^{2} \Delta \tau_{2} \tau_{0}=a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2}$
What are our unknowns in this system?

$$
\boldsymbol{r}_{x}, \boldsymbol{r}_{y,} T_{0}
$$

Problem: 3 unknowns and 2 equations!

Solution: add another beacon to produce a third equation!

Trilateration

3 equations and 3 unknowns, so we have a solvable system!
$2 a_{1, x} r_{x}+2 a_{1, y} r_{y}+2 v_{s}^{2} \Delta \tau_{1} \tau_{0}=a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2}$ $2 a_{2, x} r_{x}+2 a_{2, y} r_{y}+2 v_{s}^{2} \Delta \tau_{2} \tau_{0}=a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2}$ $2 a_{3, x} r_{x}+2 a_{3, y} r_{y}+2 v_{s}^{2} \Delta \tau_{3} \tau_{0}=a_{3, x}^{2}+a_{3, y}^{2}-v_{s}^{2} \Delta \tau_{3}^{2}$

Multilateration

We can produce overdetermined system with M beacons!

$2\left[\begin{array}{ccc}a_{1, x} & a_{1, y} & v_{s}^{2} \Delta \tau_{1} \\ a_{2, x} & a_{2, y} & v_{s}^{2} \Delta \tau_{2} \\ & \vdots & \\ a_{M-1, x} & a_{M-1, y} & v_{s}^{2} \Delta \tau_{M-1}\end{array}\right]\left[\begin{array}{c}r_{x} \\ r_{y} \\ \tau_{0}\end{array}\right]=\left[\begin{array}{c}a_{1, x}^{2}+a_{1, y}^{2}-v_{s}^{2} \Delta \tau_{1}^{2} \\ a_{2, x}^{2}+a_{2, y}^{2}-v_{s}^{2} \Delta \tau_{2}^{2} \\ \vdots \\ a_{M-1, x}^{2}+a_{M-1, y}^{2}-v_{s}^{2} \Delta \tau_{M-1}^{2}\end{array}\right]$

"Solving" an Overdetermined System

- After simplifying, we have more equations than unknowns (x, y)
- Can do least-squares regardless of number of beacons
- Best estimate of location if measurements are inconsistent
- If there is no exact point of intersection because of error or noise

$$
A x=b
$$

Setup Looks Like:

Important Notes

- Read over the math carefully, we'll be asking you about it!
- Stay safe and good luck with the rest of the semester!

