EECS 16A Touchscreen 2

Insert your names here

Resistive Touchscreen

- Investigate a resistive touchscreen
 - Something that actually was used for a long time!
- Use voltage as a signal to determine position of touch
 - How?

Resistive Touchscreen

- Physical touch results in physical contact between top and bottom layers
- Voltage dividers allow us to compute touch location

EX: Nokia N900, Nokia N97 Mini, LG Optimus, LG GW620, Nintendo DS TM

Resistive touchscreen

Tools for Today:

- In-Person:
 - Power Supply (Always set a current limit of 0.1 A!)
 - Multimeter measuring device
- Remote:
 - Launchpad measuring device & providing power
- Voltage dividers
 - How we will detect location
- Falstad
 - Circuit simulation, has virtual Power Supplies and Multimeters

Touchscreen Theory (Note 13/14)

- What's the voltage at the top?
- What's the voltage at the bottom?
- Voltage at u2?

Touchscreen Theory (Note 13/14)

What's the voltage at the top?

Vs

What's the voltage at the bottom?

0

Voltage at u2?

Voltage divider!

Touchscreen Theory (Note 13/14)

Voltage divider:

$$u_2 = V_S * \frac{kR_1}{kR_1 + R_1}$$

$$u_2 = V_S * \frac{R_1(k)}{R_1(k+1)}$$

$$u_2 = V_S * \frac{k}{k+1}$$

Independent of the value of R!

 What are the voltages at u2 and u3?

$$u_2 = V_S * \frac{k}{k+1}$$
$$u_3 = V_S * \frac{k}{k+1}$$

What's the voltage difference?

The Rs cancel out! All the matters is the proportion between the top and bottom resistors.

In fact, u3 and u2 are at the SAME VOLTAGE

- We know that u2-u3=0
- How much current goes through R3?

$$u_2 = V_S * \frac{k}{k+1}$$

$$u_3 = V_S * \frac{k}{k+1}$$

- Add one more resistor divider...
- We get our touchscreen!

Poll Time!

What is the voltage at u4?

- OV
- Same as u2
- None of the above

How much current is flowing through Rh2?

- OA
- Non-zero current

Poll Time!

What is the voltage at u4?

- OV
- Same as u2
- None of the above

How much current is flowing through Rh2?

- OA
- Non-zero current

- But how do we measure the voltage?
- Our finger can press down on a point, but we need the voltage measurement!

- We can add another (ungrounded) mesh!
- If we connect the meshes at the point we touch, we get the voltage all over the added (ungrounded) mesh!
- Why specifically a mesh? We'll see in a bit.

Resistive Touchscreen - 2 Layers

Bottom Layer: Resistive Layer

Resistive Touchscreen - 2 Layers

Top Layer: Flexible Resistive Layer

What's the difference?

- Nothing
 - The ink is a bunch of resistors
 - The resistor values don't matter because we showed only the proportions matter for this circuit
 - Their circuit diagrams are the same
- One is flexible so we can actually move it to make contact
- We use two so that we can measure with one and apply voltage to the other without changing our circuit

- Measure some voltages, compute location based on value
- Can you find any two horizontal locations that would output the same voltage?
- What about vertical?

- We can only determine vertical position
- What about the other orientation?

What if we turned it sideways?

- Let's turn it sideways
 - Apply voltage so we power the horizontal direction
 - Now, we can find vertical locations that would output the same voltage
 - But we cannot find horizontal locations that would output the same voltage
- This lets us determine horizontal location

- If we take two readings, one in each dimension can uniquely determine our location in 2D
- More on this in the lab notebook

Taking the Limit

- 9 touch points is kinda... meh
- How do we get more?

Taking the Limit

Add more resistors!

Taking the Limit

- But what if I don't want to increase the size of the circuit?
 - Add more, but make the resistors smaller!
- What happens as the resistors approach infinitely small sizes?
 - Isn't that just a resistive sheet?
 - This is how all resistive touchscreens work
 - Review lecture <u>note 12</u>, <u>note 13</u>, <u>note 14</u>

Simulating Touchsreens

- Falstad simulator (<u>Link</u>)
 - Will be used in this lab to simulate resistive dividers in upper and bottom plates

Pointers

- Remote
 - Use male-male jumper wires (recommended option)
 - Strip breadboarding wires using included wire stripper
- In-Person
 - Strip breadboarding wires using wire stripper at lab station
- Watch instructional videos in the notebook for guidance

