

Ana Arias and Miki Lustig Fall 2021

Lecture 民̂A 1A
Linear equations and Gaussian Elimination

Module 1: Imaging

Image

Merriam-Webster: A visual representation of something

Imaging

Merriam-Webster: the action or the process of producing an image

Different Images

Imaging Systems in General

Imaging System

(electronics, control, computing, algorithms, visualization...)
"Medical imagg" circa 1632
"The Anatomy Lesson of Dr. Nicolae sulp", Rembrandt Mauritshuis, TMe Hague

F2n:

Projection Xray

Projection Xray

Tomography

'tomo' - slice
'graphy' - to write

Assume it is not desirable to slice open leg. How does tomography visualizes cross-sectional slices?

From Projections
Projections

Sagittal Slices

Axial Slices

3D Rendering from Slices

Computed Tomography

Computed Tomography

http://www.youtube.com/watch?v=4gkIQHM19aY\&feature=related

Modeling Tomography

.... or y is the sum of x-ray attenuation coefficients along a line

Modeling Tomography

Modeling Tomography

Modeling Tomography

Modeling Tomography

Modeling Tomography

power=1

$$
\begin{array}{l|l|}
y_{3} & y_{4} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& y_{1}=x_{1}+x_{2} \\
& y_{2}= \\
& y_{3}=x_{1} \quad x_{3}+x_{4} \\
& y_{4}=+x_{3}+x_{4} \\
& y_{5} \approx \sqrt{2} x_{1}+\sqrt{2} x_{4} \\
& \text { or } \\
& y_{5} \approx x_{1}+\frac{1}{4} x_{2}+\frac{1}{4} x_{3}+x_{4}
\end{aligned}
$$

Modeling Tomography

Possible reconstruction

Blurred version of :

All our measurements are (converted to) linear

What does that mean? Each variable (x) is multiplied by a scalar to contribute to the measurement

$$
\begin{aligned}
& \begin{array}{l}
y_{1}=x_{1}+x_{2} \\
y_{2}= \\
y_{3}=x_{1}
\end{array} \quad+x_{3} \\
& y_{4}=\quad+x_{2} \quad \begin{array}{l}
\text { This is called a } \\
\text { system of linear equations }
\end{array} \\
& y_{5}=\sqrt{2} x_{1} \quad+\sqrt{2} x_{4}
\end{aligned} \quad \begin{aligned}
& \text { Linear Algebra is what } \\
& \text { we need to solve it! }
\end{aligned}
$$

Camera Model

Lens maps image onto sensor

Each pixel is sensed separately

$$
y_{i}=1 \cdot x_{i}
$$

All pixels sensed in parallel

Single Pixel Scanner

-What if we had only a single sensor?

- How can we create an image?
https://www.youtube.com/watch?v=U5PwsVqHT8Y

Intensity=1

Non-moving Single Pixel Camera

- Use a projector to illuminate pixels
- Sense reflected light with a sensor

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

$$
y_{1}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}
$$

Similar math as Tomography!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Similar math as Tomography!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Similar math as Tomography!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Similar math as Tomography!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Similar math as Tomography!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Non-moving Single Pixel Camera

- Use a projector to illuminate several pixels!
- Sense reflected light with a sensor
- Make many measurements and solve the equations!

Imaging Lab \#1 Setup

Imaging Lab \#1

Non-moving Single Pixel Camera

- How many measurements do you need?
-What are the best patterns?

What is linear algebra?

- The study of linear functions and linear equations, typically using vectors and matrices
- Linearity is not always applicable, but can be a good first-order approximation
- There exist good fast algorithms to solve these problems

Linear Equations

- Definition:

Consider: $f\left(x_{1}, x_{2}, \cdots, x_{N}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$
f is linear if the following identity holds:
(1) Homogeneity:

$$
f\left(\alpha x_{1}, \cdots, \alpha x_{N}\right)=a f\left(x_{1}, \ldots, x_{N}\right)
$$

(2) Super Position: if $x_{i}=y_{i}+z_{i}$, then

$$
f\left(y_{1}+z_{1}, \cdots, y_{N}+z_{N}\right)=f\left(y_{1}, \cdots, y_{N}\right)+f\left(z_{1}, \cdots, z_{N}\right)
$$

Claim: linear functions can always be expressed as:

$$
f\left(x_{1}, x_{2}, \cdots, x_{N}\right)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{N} x_{N}
$$

Proof for \mathbb{R}^{2}

- $f\left(x_{1}, x_{2}\right): \mathbb{R}^{2} \Rightarrow \mathbb{R}$ is linear. Need to prove: $f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ Trick:

$$
\begin{array}{ll}
x_{1}=1^{\prime \prime} \cdot x_{1}+0_{0}^{\prime \prime} \cdot x_{2} & \Rightarrow x_{1}=x_{1} y_{1}+x_{2} z_{1} \\
x_{2}=0 \cdot x_{1} x_{1}+{\underset{y}{z_{2}}}_{1}^{\|_{z_{2}}} \cdot x_{2} & \Rightarrow x_{2}=x_{1} y_{2}+x_{2} z_{2}
\end{array}
$$

So,

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & f\left(x_{1} y_{1}+x_{2} z_{1}, x_{1} y_{2}+x_{2} z_{2}\right) \\
& =x_{1} f\left(y_{1}, y_{2}\right)+x_{2} f\left(z_{1}, z_{2}\right) \\
& =x_{1} f(1,0)+x_{2} f(0,1) \\
& \quad c_{1} \\
= & c_{1} x_{1}+c_{2} x_{2}
\end{aligned}
$$

Linear Set of Equations

- Consider the set of M linear equations with N variables:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 N} x_{N}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 N} x_{N}=b_{2} \\
\vdots \\
a_{M 1} x_{1}+a_{M 2} x_{2}+\cdots+a_{M N} x_{N}=b_{M}
\end{gathered}
$$

- Can be written compactly using augmented matrix:

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 N} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 N} & b_{2} \\
\vdots & & \vdots & & \vdots \\
a_{M 1} & a_{M 2} & \cdots & a_{M N} & b_{M}
\end{array}\right]
$$

Back to Tomography

$$
\begin{aligned}
1 \cdot x_{1}+1 \cdot x_{2}+0 \cdot x_{3}+0 \cdot x_{4} & =4 \\
0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+1 \cdot x_{4} & =3 \\
1 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+0 \cdot x_{4} & =2 \\
0 \cdot x_{1}+1 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4} & =5 \\
\sqrt{2} x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+\sqrt{2} x_{4} & =3 \sqrt{2}
\end{aligned}
$$

x_{3}
 25

Back to Tomography

$$
\begin{aligned}
& 1 \cdot x_{1}+1 \cdot x_{2}+0 \cdot x_{3}+0 \cdot x_{4}=4 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+1 \cdot x_{4}=3 \\
& 1 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}+0 \cdot x_{4}=2 \\
& 0 \cdot x_{1}+1 \cdot x_{2}+0 \cdot x_{3}+1 \cdot x_{4}=5 \\
& \sqrt{2} x_{1}+0 \cdot x_{2}+0 \cdot x_{3}+\sqrt{2} x_{4}=3 \sqrt{2} \\
& {\left[\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 4 \\
0 & 0 & 1 & 1 & 3 \\
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 1 & 5 \\
\sqrt{2} & 0 & 0 & \sqrt{2} & 3 \sqrt{2}
\end{array}\right]}
\end{aligned}
$$

How do we solve it?

Back to Tomography

How do we systematically solve it?

Algorithm for solving linear equations

- Three basic operations that don't change a solution:

1. Multiply an equation with nonzero scalar
2. Adding a scalar constant multiple of one equation to another
3. Swapping equations
