

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 3A 2A
Gaussian Elimination
Vectors, Matrices, Multiplications,
And Span

Announcements

Quest: Tuesday 09/14/21 8:30pm

- Last time:
 - Gaussian Elimination
 - Started vectors
- Today:
 - Continue vectors
 - Matrix-Matrix and Matrix-vector Multiplications
 - Matrix-Vector Multiplications as linear set of equations
 - Intro to span

Vectors

- An array of N numbers
 - Represents coordinates in an N-dimensional space

$$\vec{x} = \begin{bmatrix} x_1 \\ x_1 \\ \vdots \\ x_N \end{bmatrix}, \qquad \vec{x} \in \mathbb{R}^N$$

For example:

$$\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \qquad \vec{x} \in \mathbb{R}^2$$

Matrices

A collection of numbers in a rectangular form

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1M} \\ x_{21} & x_{22} & \cdots & x_{2M} \\ \vdots & \vdots & \cdots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{NM} \end{bmatrix}, \quad X \in \mathbb{R}^{\mathbb{N} \times \mathbb{M}}$$

Or a collection of M, N-length vectors

$$X = \left| \begin{array}{cccc} ec{x}_1 & ec{x}_2 & \cdots & ec{x}_M \end{array} \right|, \quad X \in \mathbb{R}^{\mathbb{N} imes \mathbb{M}}$$

Matrix Addition

• When matrices are the same size, they can be added element-wise

$$X + Y = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

Scalar multiplication — by all elements

$$2X = 2\begin{bmatrix} 3 & -1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Matrix Addition

• When matrices are the same size, they can be added element-wise

$$X + Y = \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} A & \bigcirc \\ \bigcirc & A \end{bmatrix}$$

Scalar multiplication — by all elements

$$2X = 2\begin{bmatrix} 3 & -1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -\lambda \\ -\lambda & -9 \end{bmatrix}$$

Vector-Vector Multiplication

- Multiplication is valid only for specific matching dimensions!
 - Width of the 1st, matches length of the second

and like that!

Vector Vector Multiplication

$$\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^{N \times 1}$$

 $N \times 1$

$$\overrightarrow{y}^T\overrightarrow{x} =$$

or "dot product"

Like this....

$$= y_1x_1 + y_2x_2 + y_3x_3 + \dots + y_Nx_N = 1 \times 1$$

$$= x_1$$

$$x_1$$

$$x_2$$

$$\vdots$$

$$x_N$$
Scalar 1×1
Also known as "inner product"

$$\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^{N \times 1}$$

 $1 \times N$

$$\overrightarrow{y}^T\overrightarrow{x} =$$

 $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$

 $N \times 1$

 $= y_1 x_1 + y_2 x_2 + y_3 x_3 + \dots + y_N x_N =$

scalar 1×1

1 × 1

and like that!

What about this case....

$$A \in \mathbb{R}^{M \times N}, \overrightarrow{x} \in \mathbb{R}^{N \times 1}$$

 $A\overrightarrow{x} = M$ M = 2 x_1 x_2 \vdots $x_N = 2$

Also known as "inner product" or "dot product"

Like this....

$$A \in R^{M \times N}, \overrightarrow{x} \in \mathbb{R}^{N \times 1}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N$$

$$[a_{11} \ a_{12} \ \cdots \ a_{1N}] \overrightarrow{x} = \overrightarrow{y}_1^T \overrightarrow{x}$$

Like this....

$$A \in \mathbb{R}^{M \times N}, \overrightarrow{x} \in \mathbb{R}^{N \times 1}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N$$

$$[a_{11} \ a_{12} \ \cdots \ a_{1N}] \overrightarrow{x} = \overrightarrow{y}_1^T \overrightarrow{x}$$
$$[a_{21} \ a_{22} \ \cdots \ a_{2N}] \overrightarrow{x} = \overrightarrow{y}_2^T \overrightarrow{x}$$

$$A \in \mathbb{R}^{M \times N}, \overrightarrow{x} \in \mathbb{R}^{N \times 1}$$

 $[a_{M1} \ a_{M2} \ \cdots \ a_{MN}]\overrightarrow{x} = \overrightarrow{y}_{M}^{T}\overrightarrow{x}$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N$$

$$\vdots$$

$$a_{M1}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N$$

$$a_{M1}x_1 + a_{M2}x_2 + \dots + a_{MN}x_N$$

$$A \in \mathbb{R}^{M \times N}, \overrightarrow{x} \in \mathbb{R}^{N \times 1}$$

 $\begin{array}{c} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N \\ & \bullet \\ & \bullet \\ a_{M1}x_1 + a_{M2}x_2 + \cdots + a_{MN}x_N \end{array}$

— M

What about this case....

$$A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$$

AB = M

$$A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$$

$$a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1N}b_{N1}$$

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

$$a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1N}b_{N1}$$
 $a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1N}b_{N2}$

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

Like this....

$$a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1N}b_{N1}$$
 $a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1N}b_{N2}$ •••

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

Like this....

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

Like this....

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

 $A \in R^{M \times N}, B \in \mathbb{R}^{N \times L}$

and like that!

Result at location 2x2 = $a_{21}b_{12} + a_{22}b_{22} + \cdots + a_{2N}b_{N2}$

and like that!

$$N \times L$$

$$M \times L$$

Vector Vector Multiplication

$$\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^{N \times 1}$$

Vector Vector Multiplication

$$\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^{N \times 1}$$

$$\overrightarrow{y}^T \overrightarrow{x} =$$

$$= y_1 x_1 + y_2 x_2 + y_3 x_3 + \dots + y_N x_N$$

scalar 1×1

Also known as "inner product" or "dot product"

$$\overrightarrow{x} \overrightarrow{y}^T = \begin{bmatrix} 1 \times N \\ N \times 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_N \\ x_2y_1 & x_2y_2 & \cdots & x_2y_N \\ \vdots & \vdots & \cdots & \vdots \\ x_Ny_1 & x_Ny_2 & \cdots & x_Ny_N \end{bmatrix}$$

 $N \times N$

Do not commute!
Also known as "outer product"

Matrix multiplication does not commute!

Matrix-Vector Form of Systems of Linear Equations

• Consider the matrix equation: $A\overrightarrow{x} = \overrightarrow{b}$

$$A\overrightarrow{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N \\ \vdots \\ a_{M1}x_1 + a_{M2}x_2 + \cdots + a_{MN}x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{bmatrix}$$

$$M \times N \quad N \times 1$$

Same as the Augmented Matrix!

 $A\overrightarrow{x} = \overrightarrow{b}$ is another way to write A linear set of equations!

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1N} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2N} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{M1} & a_{M2} & \cdots & a_{MN} & b_M \end{bmatrix}$$

• Row / Measurement Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

• Row / Measurement Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Q: What does a row mean?

A: How each variable affect a particular measurement

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

$$\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] =$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

$$\left[\begin{array}{cccc} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \\ \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

• Column Perspective of $A\overrightarrow{x} = \overrightarrow{b}$

$$\left[egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} b_1 \ b_2 \end{array}
ight]$$

$$= \begin{bmatrix} a_{11}x_1 \\ a_{21}x_1 \end{bmatrix} + \begin{bmatrix} a_{12}x_2 \\ a_{22}x_2 \end{bmatrix} + \begin{bmatrix} a_{13}x_3 \\ a_{23}x_3 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Q: What does a column mean?

A: How a particular variable affects all measurements.

Linear combination of vectors

- Given set of vectors $\{\overrightarrow{a}_1, \overrightarrow{a}_2, \cdots, \overrightarrow{a}_M\} \in \mathbb{R}^N$, and coefficients $\{\alpha_1, \alpha_2, \cdots, \alpha_M\} \in \mathbb{R}^N$
- A linear combination of vectors is defined as: $\overrightarrow{b} \triangleq \alpha_1 \overrightarrow{a}_1 + \alpha_2 \overrightarrow{a}_2 + \cdots + \alpha_M \overrightarrow{a}_M$

Recall: \overrightarrow{Ax} :

$$= x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3$$

Matrix-vector multiplication is a linear combination of the columns of A!

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{matrix}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

A: $2\overrightarrow{a}_1 + 1\overrightarrow{a}_2$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$\begin{matrix} \downarrow \\ \downarrow \\ a_1 \end{matrix}$$

Q: What linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 will give \overrightarrow{b} ?

A:
$$2\vec{a}_1 + 1\vec{a}_2$$
Caussian Elimination:
$$\begin{bmatrix} 1 & 1 & | 3 \\ 1 & -1 & | -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & | 3 \\ 0 & 1 & | 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & | 3 \\ 0 & 1 & | 1 \end{bmatrix}$$

Course on Eliminotion:

$$\begin{bmatrix} 1 & 1 & | & 3 \\ 1 & -1 & | & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & | & 3 \\ 0 & 1 & | & 1 \end{bmatrix} \qquad x_1 = \lambda \qquad \Rightarrow \qquad \vec{b} = \lambda \vec{d} + 1 \cdot \vec{d}, \qquad \vec{d} = \lambda \vec{d} + 1 \cdot \vec{d} +$$

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{cases} \vec{a}_1 & \vec{a}_2 \end{cases}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....I think so....

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{cases} \overrightarrow{a}_1 & \overrightarrow{a}_2 \end{cases}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....I don't think so.... Unless its along the line \overrightarrow{a}_1

• Consider the problem: $A\overrightarrow{x} = \overrightarrow{b}$:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{b}$$

$$\begin{cases} \frac{1}{a_1} & \frac{1}{a_2} \\ \frac{1}{a_2} & \frac{1}{a_2} \end{cases}$$

Q: Can linear combination of \overrightarrow{a}_1 , \overrightarrow{a}_2 give any \overrightarrow{b} ?

A: Hmmm....yes!

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

 $A: \mathbb{R}^2!$

- ullet Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

Example: What is the span of the cols of A?

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

 $A: \mathbb{R}^2$

$$\operatorname{span}(A) = \left\{ \vec{v} \middle| \vec{v} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \alpha, \beta \in \mathbb{R} \right\}$$

$$\alpha, \beta \in \mathbb{R}$$

Example 2: What is the span of the cols of A?

$$A = \left| \begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array} \right|$$

A: The line $x_1 = x_2$

$$\operatorname{span}(A) = \left\{ \vec{v} \middle| \vec{v} = \alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \alpha \in \mathbb{R} \right\}$$

Definition:

If
$$\exists \overrightarrow{x}$$
 s.t. $A\overrightarrow{x} = \overrightarrow{b}$ then $\overrightarrow{b} \in \text{span}\{A\}$

Converse: $\overrightarrow{b} \in \operatorname{span}\{A\}$, there is a solution for $A\overrightarrow{x} = \overrightarrow{b}$

Q: What if $\overrightarrow{b} \notin \operatorname{span}\{A\}$?

A: There is no solution for $\overrightarrow{Ax} = \overrightarrow{b}$

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with nonzero scalar

$$2x + 3y = 4$$
 has the same solution as: $4x + 6y = 8$

Proof for N=2:

Let
$$ax + by = c$$
, with solution x_0, y_0
 $\Rightarrow ax_0 + by_0 = c$

Show that $\beta ax + \beta by = \beta c$, has the same solution.

Substitute x_0, y_0 for x, y:

$$\beta ax_0 + \beta by_0 = \beta c$$

$$\beta (ax_0 + by_0) = \beta c$$

$$\beta c = \beta c$$
 But is it the only solution?

$$\beta ax + \beta by = \beta c$$
, with solution: x_1, y_1
 $\Rightarrow \beta ax_1 + \beta by_1 = \beta c$

Show that
$$ax + by = c$$
, has the same solution.....

Since
$$\beta \neq 0....$$

$$\beta ax_1 + \beta by_1 = \beta c \Rightarrow ax_1 + by_1 = c$$

SOLUTION OF ONE, IMPLIES THE OTHER AND VICE-VERSA!

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with *nonzero* scalar
 - 2. Adding a scalar constant multiple of one equation to another

Concept of proof: look at explicit solution, show they are the same Also show the reverse — by applying the reverse operations