

Welcome to EECS 16A! Designing Information Devices and Systems I

Ana Arias and Miki Lustig Fall 2021

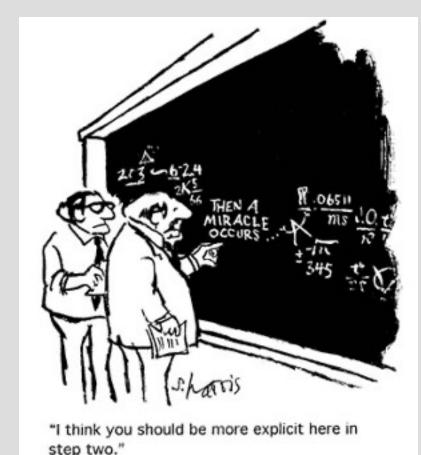
Lecture 2B Proofs Linear (in)dependance Matrix Transformations

Announcements

- Quest: Tuesday 09/14/21 8:30pm
- Last time:
 - Continue vectors
 - Matrix-Matrix and Matrix-vector Multiplications
 - Matrix-Vector Multiplications as linear set of equations
 - Intro to span
- Today:
 - Proofs
 - Linear (in)dependance
 - Matrix Transformations

Steps for a proof

- Write out the statement, note direction ("if" \rightarrow "then")
- Try a simple example (to see a pattern)
 - Use what is known, definitions and other theorems
- Manipulate both sides of the arguments
 - Must justify each step
- Know the different styles of proofs to try
 - Constructive
 - Proof by contradiction



Algorithm for solving linear equations

• Three basic operations that don't change a solution:

1. Multiply an equation with nonzero scalar

2x + 3y = 4 has the same solution as: 4x + 6y = 8

Proof for N=2:

Let ax + by = c, with solution x_0, y_0 $\Rightarrow ax_0 + by_0 = c$

Show that $\beta ax + \beta by = \beta c$, has the same solution.

Substitute x_0, y_0 for x, y:

$$\beta a x_0 + \beta b y_0 = \beta c$$

$$\beta (a x_0 + b y_0) = \beta c$$

$$\beta c = \beta c$$
 But is it the only solution

 $\beta ax + \beta by = \beta c$, with solution: x_1, y_1 $\Rightarrow \beta ax_1 + \beta by_1 = \beta c$

Show that ax + by = c, has the same solution....

Since $\beta \neq 0....$

 $\beta a x_1 + \beta b y_1 = \beta c \Rightarrow a x_1 + b y_1 = c$

SOLUTION OF ONE, IMPLIES THE OTHER AND VICE-VERSA!

Algorithm for solving linear equations

- Three basic operations that don't change a solution:
 - 1. Multiply an equation with nonzero scalar
 - 2. Adding a scalar constant multiple of one equation to another

(1)
$$x + y = 2$$

(2) $3x + 2y = 5$

and

Concept of proof: look at explicit solution, show they are the same Also show the reverse — by applying the reverse operations

Span / Column Space / Range

- Span of the columns of A is the set of all vectors \overrightarrow{b} such that $\overrightarrow{Ax} = \overrightarrow{b}$ has a solution
 - i.e. the set of all vectors that can be reached by all possible linear combinations of the columns of A

• Definition:

If
$$\exists \vec{x}$$
 s.t. $A \vec{x} = \vec{b}$ then $\vec{b} \in \text{span}\{A\}$

Theorem: span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Know:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \Rightarrow \left\{ \overrightarrow{v} \mid \overrightarrow{v} = \alpha \begin{bmatrix} 1\\1 \end{bmatrix} + \beta \begin{bmatrix} 1\\-1 \end{bmatrix} \quad , \alpha, \beta \in \mathbb{R} \right\} = \mathbb{S}$$

Need to show:
span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

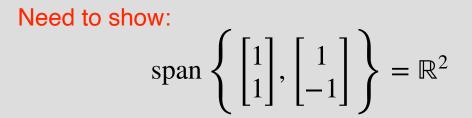
Concept: pick some specific $\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$, and show that it belongs to \mathbb{S}

Need to solve:

Theorem: span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} = \mathbb{R}^2$$

Know:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\} \Rightarrow \left\{ \overrightarrow{v} \mid \overrightarrow{v} = \alpha \begin{bmatrix} 1\\1 \end{bmatrix} + \beta \begin{bmatrix} 1\\-1 \end{bmatrix} \quad , \alpha, \beta \in \mathbb{R} \right\} = \mathbb{S}$$



Concept: pick some specific $\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^2$, and show that it belongs to \mathbb{S}

Need to solve:

$$\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
unknown
and $\in \mathbb{R}^2$

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Gaussian Elimination:

Need to solve:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Gaussian Elimination:

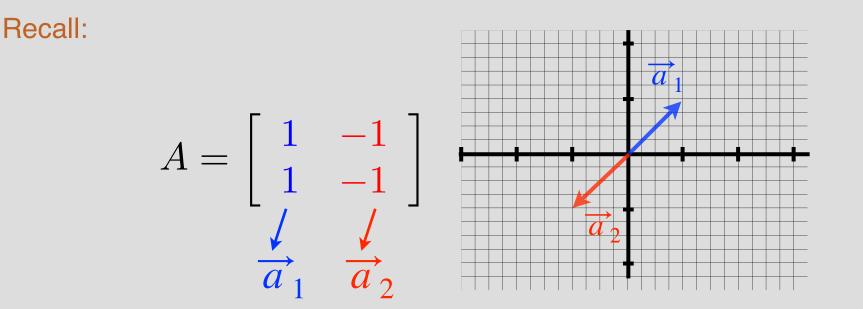
 $\begin{bmatrix} 1 & 0 & b_1 + b_1 \\ 0 & 1 & b_1 - b_1 \end{bmatrix} \Rightarrow \alpha = \frac{b_1 + b_2}{2}, \beta = \frac{b_1 - b_2}{2},$

Every $\overrightarrow{b} \in \mathbb{R}^2$ can be written as linear combinations! So also, $\overrightarrow{b} \in \mathbb{S}$

 $\frac{b_{1}+b_{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{b_{1}-b_{2}}{2} - 1 \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$

Constructive proof

 $\begin{bmatrix} 1 & 1 & b_1 \\ 1 & -1 & b_1 \\ 1 & -1 & b_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & b_1 \\ 0 & -1 & b_1 & b_1 \\ 0 & -1 & b_1 & b_1 & b_1 \\ 0 & -1 & b_1 & b_1 & b_1 \\ 0 & -1 & b_1 & b_1 & b_1 \\ 0 & -1 &$



Department of Redundancy

 \overrightarrow{a}_1 and \overrightarrow{a}_2 are linearly dependent

$$\vec{a}_1 = -\vec{a}_2$$

• Definition 1: A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_N\}$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_N\} \in \mathbb{R}$, such that: $\vec{a}_i = \sum \alpha_j \vec{a}_j$ $1 \le i, j \le M$ i≠i For example: if $\vec{a}_2 = 3\vec{a}_1 - 2\vec{a}_5 + 6\vec{a}_7$ \overrightarrow{a}_i in the span of all \overrightarrow{a}_i s

Need to solve:

Are these linearly dependent?

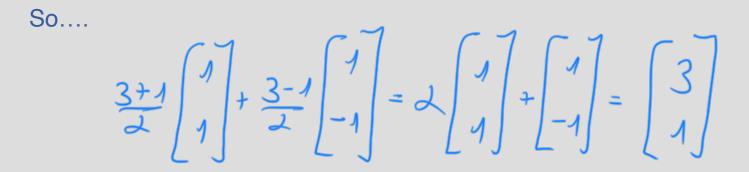
but

Need to solve:

 $\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{vmatrix} 3 \\ 1 \end{vmatrix}$

we showed that....

$$\frac{b_1 + b_2}{2} \begin{bmatrix} J \\ J \end{bmatrix} + \underbrace{b_1 - b_2}{2} \begin{bmatrix} J \\ -J \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$



Linear dependence / independence

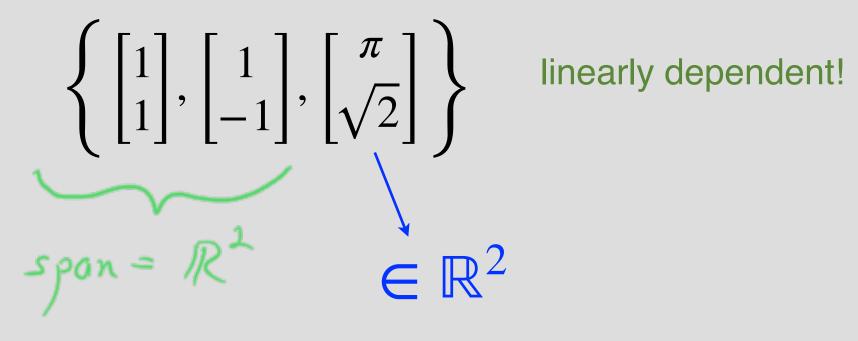
• Definition 2: A set of vectors $\{\overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_N}\}$ are linearly dependent if $\exists \{\alpha_1, \alpha_2, \dots, \alpha_N\} \in \mathbb{R}$, such that: $\sum_{i=1}^N \alpha_i \overrightarrow{a_i} = 0$ As long as not all $a_i = 0$

• Definition:

A set of vectors $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_N\}$ are linearly independent if they are not dependent

Linear dependence / independence

Are these linearly dependent?



Solutions for linear equations

• Theorem: if the columns of the matrix A are linearly dependent then, $\overrightarrow{Ax} = \overrightarrow{b}$ does <u>not</u> have a unique solution

PROOF Consider the counter-example $S \triangleq \{0, \bullet\}, \tau \triangleq$ $\{(\bullet, \bullet), (\bullet, O), (O, O)\}$ so that $\mathcal{M}_{\tau} = \{(i, \lambda \ell \cdot \bullet), (j, \lambda \ell \cdot O), (j, \lambda \ell \cdot$ $(k, \lambda \ell \cdot (\ell < m? \bullet i \circ))$. We let $\mathcal{X} \triangleq \{(i, \sigma) \mid \forall j < i :$ $\begin{aligned} \sigma_j &= \bullet \} \text{ so that } \neg FD(\mathcal{X}). & \text{We have } \mathcal{M}_{\tau \downarrow \bullet} = \{ \langle i, \lambda \ell \cdot \bullet \rangle, \\ (k, \lambda \ell \cdot (\ell < m ? \bullet \iota \circ)) \mid k < m \}, & \mathcal{M}_{\tau \downarrow \circ} = \{ \langle j, \lambda \ell \cdot \circ \rangle, \\ (k, \lambda \ell \cdot (\ell < m ? \bullet \iota \circ)) \mid k \geq m \} \text{ and } \oplus \{ \mathcal{X} \} = \{ \langle i, \sigma \rangle \mid \forall j \leq i : \sigma_j = \bullet \}. & \text{We have } \alpha_{\mathcal{M}_{\tau}}^{\vee} (\oplus \{ \mathcal{X} \}) = \{ s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \oplus \{ \mathcal{X} \} \} = \{ \bullet \} \end{aligned}$ whereas $\widetilde{pre}[\tau](\alpha_{\mathcal{M}_{\tau}}^{\vee}(\mathcal{X})) = \widetilde{pre}[\tau](\{s \mid \mathcal{M}_{\tau \downarrow s} \subseteq \mathcal{X}\}) = \widetilde{pre}[\tau](\{\bullet\})$ $= \{s \mid \forall s' : t(s, s') \Rightarrow s' = \bullet\} = \emptyset$ since $t(s, \bullet)$ implies $s = \bullet$ and t(0, O) holds.

Solutions for linear equations

• Theorem: if the columns of the matrix A are linearly dependent then, $A\overrightarrow{x} = \overrightarrow{b}$ does <u>not</u> have a unique solution Proof for $A \in \mathbb{R}^{3 \times 3}$

know: columns are linearly independent show: more than 1 solution Concept: pick some specific solution \vec{x}^* , and show that there's another one Let: $A\vec{x}^* = \vec{b}$ and $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$

From linear dependence Def 2:

 $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + \alpha_3 \overrightarrow{a_3} = 0$

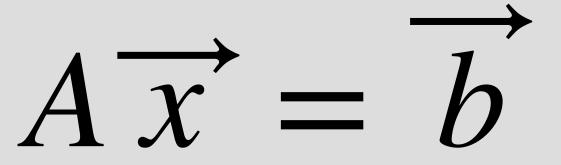
Solutions for linear equations

• Theorem: if the columns of the matrix A are linearly dependent then, $A\overrightarrow{x} = \overrightarrow{b}$ does <u>not</u> have a unique solution Proof for $A \in \mathbb{R}^{3 \times 3}$

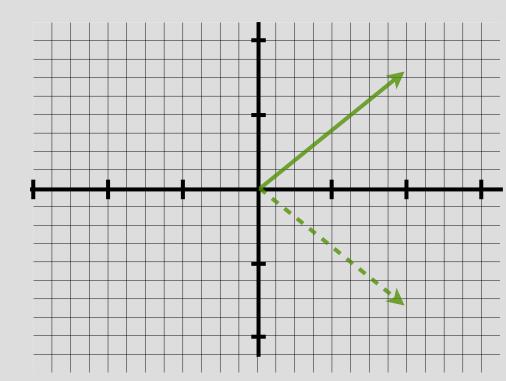
know: columns are linearly independent show: more than 1 solution Concept: pick some specific solution \overrightarrow{x}^* , and show that there's another one Let: $A \overrightarrow{x^*} = \overrightarrow{b}$ and $A = \begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \overrightarrow{a_3} \end{bmatrix}$ From linear dependence Def 2: $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + \alpha_3 \overrightarrow{a_3} = 0 \longrightarrow \begin{bmatrix} \overrightarrow{a_1} & \overrightarrow{a_2} & \overrightarrow{a_3} \end{bmatrix} \begin{bmatrix} \cancel{a_1} & \overrightarrow{a_2} & \cancel{a_3} \end{bmatrix} \begin{bmatrix} \cancel{a_1} & \cancel{a_2} & \cancel{a_1} & \cancel{a_1} & \cancel{a_1} & \cancel{a_1}$ $\Rightarrow A \overrightarrow{x^{\dagger}} = A(\overrightarrow{x^{\ast}} + \overrightarrow{\alpha}) = A \overrightarrow{x^{\ast}} + A \overrightarrow{\alpha} = \overrightarrow{b} + 0$ So $\overrightarrow{x}^{\dagger}$ is another solution!

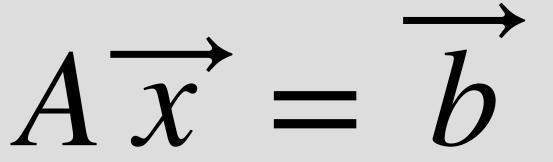
Matrix Transformations

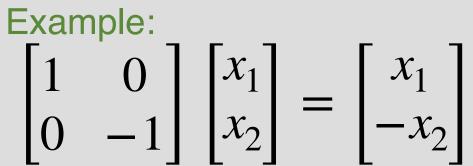
$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{90^{\circ} & 90^{\circ} \\ 30^{\circ} & 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{2} \\ \alpha_{2} \end{bmatrix}$$



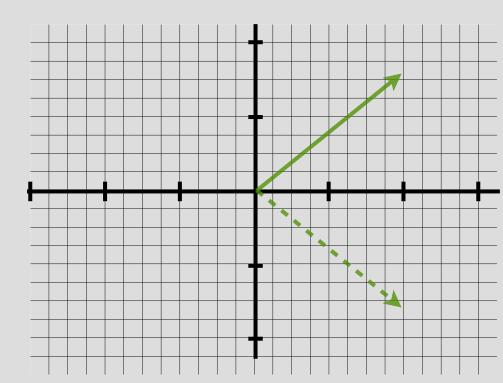
Example: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$

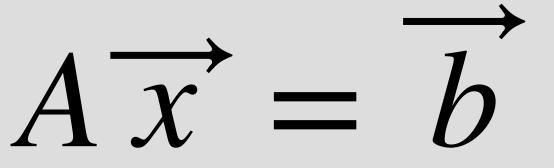






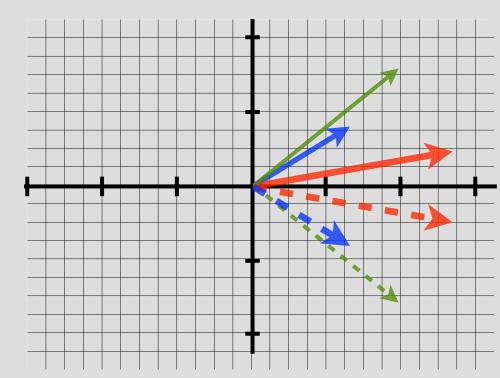
https://www.youtube.com/watch?v=LhF_56SxrGk

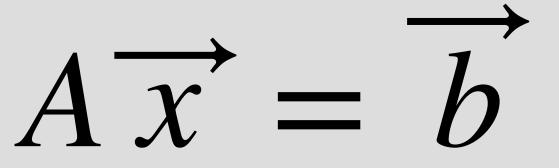




Example: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$

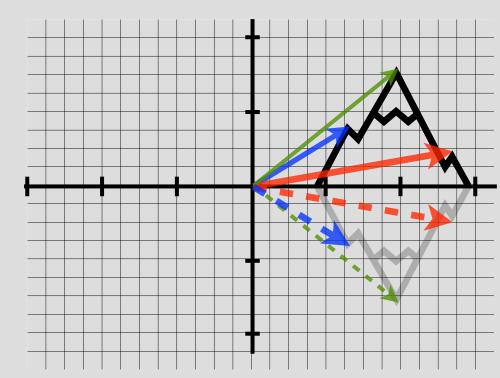
Reflection Matrix!





Example: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$

Reflection Matrix!

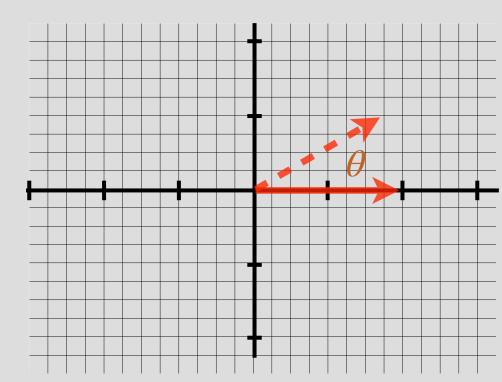


Example 2:
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta)x_1 - \sin(\theta)x_2 \\ \sin(\theta)x_1 + \cos(\theta)x_2 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$

Rotation Matrix!

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = \underbrace{90^\circ}_{12} \underbrace{Q_2}_{12}$$



Linear Transformation of vectors

f: is a linear transformation if:

$$f(\alpha \overrightarrow{x}) = \alpha f(\overrightarrow{x}) \qquad \alpha \in \mathbb{R}$$
$$f(\overrightarrow{x} + \overrightarrow{y}) = f(\overrightarrow{x}) + f(\overrightarrow{y})$$

Claim: Matrix-vector multiplications satisfy linear transformation

$$A \cdot (\alpha \overrightarrow{x}) = \alpha A \overrightarrow{x}$$

Proof via explicitly writing the elements

$$A \cdot (\overrightarrow{x} + \overrightarrow{y}) = A \overrightarrow{x} + A \overrightarrow{y}$$