

Welcome to EECS 16A!

Designing Information Devices and Systems I

Ana Arias and Miki Lustig

Lecture 4A EigenVals/Vecs/Spaces

Announcements

- Last time:
 - Vector spaces
 - Null spaces
 - Subspaces
- Today:
 - Computing the determinant
 - Eigen Values and Eigen Vectors of a Matrix
 - Example via page-rank

Equivalent Statements

- Matrix A is invertible
- $\bullet A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution
- $\bullet A$ has linearly independent columns (A is full rank)
- •A has a trivial nullspace
- ullet The determinant of A is not zero

Jargon from Last time

- Rank a matrix A is the number of linearly independent columns
- Nullspace of a matrix A is the set of solutions to $A\overrightarrow{x} = 0$
- A **vector space** is a set of vectors connected by two operators (+,x)
- A vector **subspace** is a subset of vectors that have "nice properties"
- A basis for a vector space is a minimum set of vectors needed to represent all vectors in the space
- Dimension of a vector space is the number of basis vectors
- Column space is the span (range) of the columns of a matrix
- Row space is the span of the rows of a matrix

Vector Space

• A vector space, is a set of vectors and scalars ($\mathbb{V} \in \mathbb{R}^N$, $\mathbb{F} \in \mathbb{R}$) and two operators \cdot , + that satisfy the following:

Axioms of closure

1.
$$\alpha \overrightarrow{x} \in \mathbb{V}$$

2.
$$\overrightarrow{x} + \overrightarrow{y} \in \mathbb{V}$$

3.
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$
 (associativity)

Axioms of addition

(+)

4.
$$\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y} + \overrightarrow{x}$$
 (commutativity)

5.
$$\exists \overrightarrow{0} \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + \overrightarrow{0} = \overrightarrow{x}$ (additive identity)

6.
$$\exists (-\overrightarrow{x}) \in \mathbb{V}$$
 s.t. $\overrightarrow{x} + (-\overrightarrow{x}) = \overrightarrow{0}$ (additive inverse)

7.
$$\alpha(\overrightarrow{x} + \overrightarrow{y}) = \alpha \overrightarrow{x} + \alpha \overrightarrow{y}$$
 (distributivity)

Axioms of scaling (\cdot)

8.
$$\alpha \cdot (\beta \overrightarrow{x}) = (\alpha \beta) \cdot \overrightarrow{x}$$

9.
$$(\alpha + \beta)\overrightarrow{x} = \alpha \overrightarrow{x} + \beta \overrightarrow{x}$$

10.
$$1 \cdot \overrightarrow{x} = \overrightarrow{x}$$

Subspaces

- A subspace \mathbb{U} consists of a subset of \mathbb{V} in vector space $(\mathbb{V}, \mathbb{F}, +, \cdot)$
 - $\mathbb{U} \subset \mathbb{V}$ and have 3 properties
 - 1. Contains $\overrightarrow{0}$, i.e., $\overrightarrow{0} \in \mathbb{U}$
 - 2. Closed under vector addition: \overrightarrow{v}_1 , $\overrightarrow{v}_2 \in \mathbb{U}$, $\Rightarrow \overrightarrow{v}_1 + \overrightarrow{v}_2 \in \mathbb{U}$
 - 3. Closed under scalar multiplication: $\overrightarrow{v}_1 \in \mathbb{U}$, $\alpha \in \mathbb{F}$, $\Rightarrow \alpha \overrightarrow{v} \in \mathbb{U}$

Null Space

• Definition: The null-space of $A \in \mathbb{R}^{N \times M}$ is the set of all vectors $\overrightarrow{x} \in \mathbb{R}^M$ such that: $A\overrightarrow{x} = 0$

$$\overrightarrow{Ax} = 0$$

Rank

- $A \in \mathbb{R}^{N \times M}$, Rank $\{A\} = \dim \{\text{Span } \{A\}\}$
- Rank $\{A\} = \dim \{ \operatorname{Span} \{A\} \} \leq \min(M, N)$

• Rank = L, mean the matrix $A \in \mathbb{R}^{N \times M}$ has L independent rows&columns

• Rank $\{A\}$ + dim $\{\text{Null }\{A\}\}$ = min(M, N)

The Determinant

• For $A \in \mathbb{R}^{2 \times 2}$

$$\det(A) = \left(\begin{array}{c} a & b \\ a & \end{array}\right) = ad - bc$$

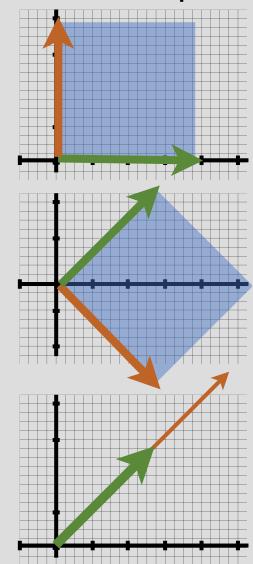
When $det(A) \neq 0$, A is invertible

Recall:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2\times 2}$

Area of a parallelogram



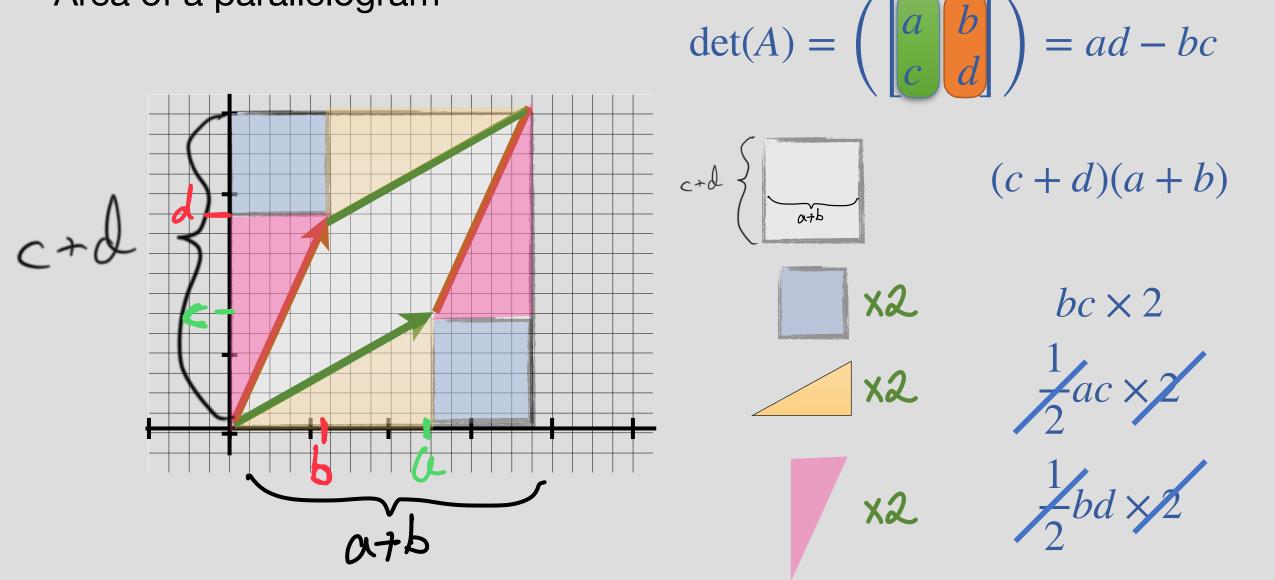
lelogram
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ Area} \neq \emptyset \qquad \det(A) = \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$$

$$\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$$
 Area $\neq 0$

$$\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix}$$
 Area=0 $det(A) = 1 \cdot 2 - 1 \cdot 2 = 0$

Interpretation of Determinant of a Matrix in $\mathbb{R}^{2\times 2}$

Area of a parallelogram





area =
$$(c+d)(a+b) - 2bc - ac - bd$$

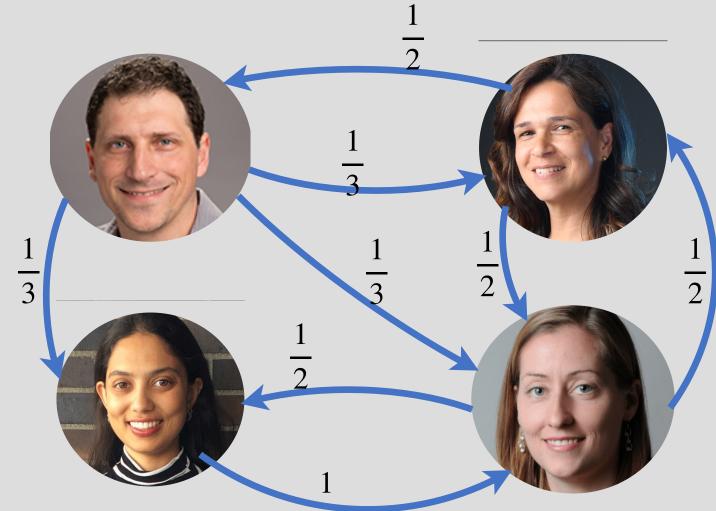
= $ca + cb + da + db - 2bc - gc - bd = ad - bc$

Determinant in \mathbb{R}^3

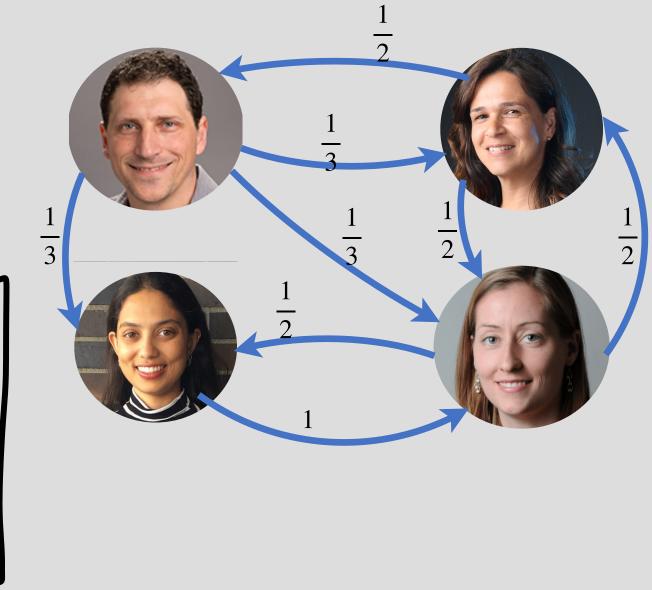
$$\det\left(\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\right) = \begin{bmatrix} \mathbf{a}_{\mathbf{X}} \\ \mathbf{e}_{\mathbf{i}} \end{bmatrix} - \begin{bmatrix} \mathbf{b}_{\mathbf{X}} \\ \mathbf{g}_{\mathbf{i}} \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{\mathbf{i}} \\$$

PageRank

 Ranks websites based on how many high-ranked pages link to them



PageRank



$$\frac{1}{3}$$

$$\frac{1}{3}$$

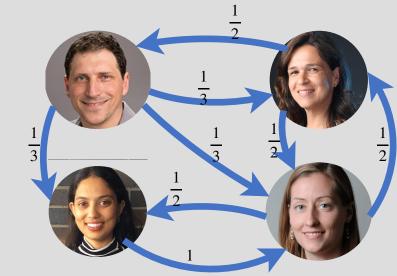
$$\frac{1}{3}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\vec{\mathcal{L}}(0) = \begin{pmatrix} 4/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$

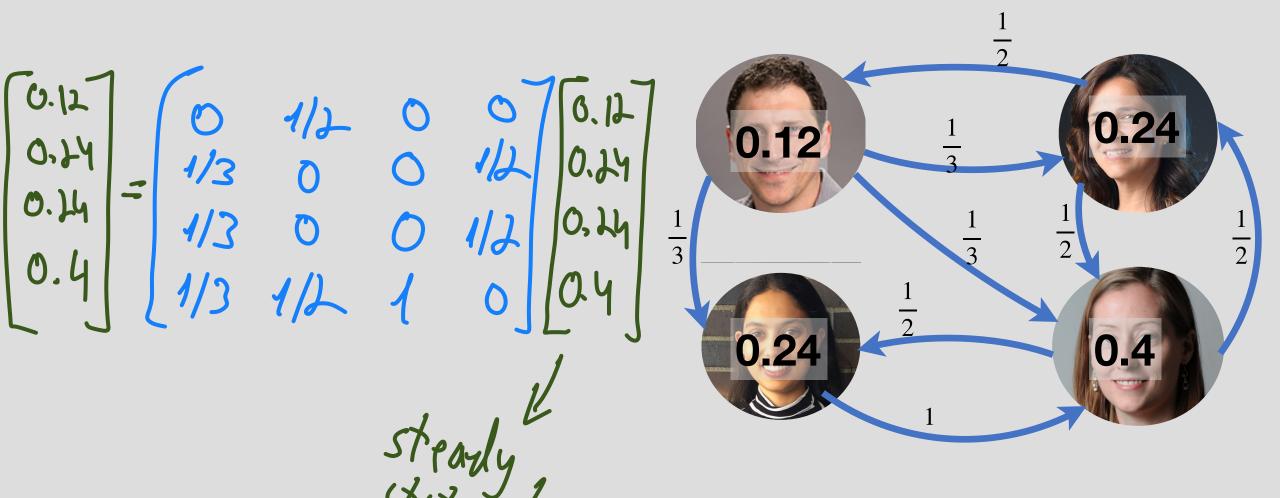
equal Ranking



t=100

$$\vec{x}(0) = \begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \end{pmatrix}$$
equal Ranking

Page Rank



General Steady-state solution

$$\overrightarrow{x}_{SS} = Q \cdot \overrightarrow{x}_{SS}$$

$$I\overrightarrow{x}_{SS} = Q \cdot \overrightarrow{x}_{SS}$$

$$Q \cdot \overrightarrow{x}_{SS} - I\overrightarrow{x}_{SS} = \overrightarrow{0}$$

$$(Q - I)\overrightarrow{x}_{SS} = \overrightarrow{0}$$

The Null(Q - I) is the steady state solution Find via Gauss elimination!

Eigen Values

We saw an example for a steady-state vector

$$Q \cdot \overrightarrow{x}_{ss} = 1 \cdot \overrightarrow{x}_{ss}$$

Direction, and size of the vector did not change!

We will now look at the more general case

$$Q \cdot \overrightarrow{x} = \lambda \cdot \overrightarrow{x}$$

In this case, we say that

 \overrightarrow{x} is an Eigen Vector of Q with Eigen Value λ and span $\{\overrightarrow{x}\}$ is the associated Eigen-space

Eigen Values

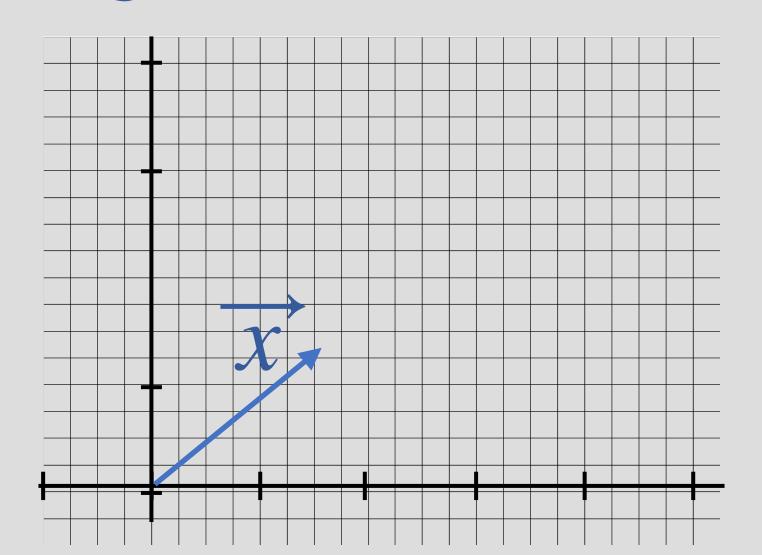
$$Q \cdot \overrightarrow{x} = \lambda \cdot \overrightarrow{x}$$

What happens if,

$$\lambda = 1$$
?

$$\lambda > 1$$
?

$$\lambda < 1$$
?



Eigen Values and Eigen Vectors

• Definition: Let $Q \in \mathbb{R}^{N \times N}$ be a square matrix, and $\lambda \in \mathbb{R}$ if $\exists \overrightarrow{x} \neq \overrightarrow{0}$ such that $Q\overrightarrow{x} = \lambda \overrightarrow{x}$, then λ is an eigenvalue of Q, \overrightarrow{x} is an eigenvector and $\text{Null}(Q - \lambda I)$ is its eigenspace.

Consider:

$$Q = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \end{bmatrix}, \text{ we want to find } \lambda, \overrightarrow{x} \text{ such that } Q\overrightarrow{x} = \lambda \overrightarrow{x}$$

$$Q\overrightarrow{x} - \lambda \overrightarrow{x} = \overrightarrow{0}$$

$$(Q\overrightarrow{x} - \lambda I)\overrightarrow{x} = \overrightarrow{0}$$

Find $\overrightarrow{x} \in \text{Null}(Q - \lambda I)$:

$$\overrightarrow{x} \in \text{Null}(Q - \lambda I):$$

$$Q - \lambda I = \begin{bmatrix} i \lambda & 0 \\ i \lambda & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ i \lambda & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ i \lambda & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ i \lambda & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & \lambda \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} M L - \lambda & \lambda \\ 0 & \lambda \end{bmatrix} =$$

Find
$$\overrightarrow{x} \in \text{Null}(Q - \lambda I)$$
:

$$9-\lambda I= (1/2) 2 + ind 2$$

$$2+ind 2$$

Find λ that results in a non-trivial null space

$$\det(Q - \lambda I) = 0$$

$$(1/2 - \lambda)(1 - \lambda) - (0) \cdot 1/2 = 0$$

$$(1/2 - \lambda)(1 - \lambda) = 0$$

$$\lambda_1 = 1/2, \lambda_2 = 1$$

$$\lambda_1 = 1/2$$

$$\begin{bmatrix} 1/2 - 1/2 & 0 \\ 1/2 & 1 - 1/2 \end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix} 0 & 0 \\ 1/2 & 1/2 \end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix} 1/1 & 1/1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad x_1 = -x_2$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \vec{x}_1 \in Span \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_1 = 1/2$$

$$\begin{bmatrix} 1/2 - 1/2 & 0 \\ 1/2 & 1 - 1/2 \end{bmatrix} \overrightarrow{x} = 0$$

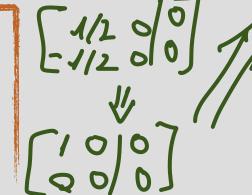
$$\begin{bmatrix} 0 & 0 \\ 1/2 & 1/2 \end{bmatrix} \overrightarrow{x} = 0$$

$$\lambda_2 = 1$$

$$\begin{bmatrix} 1/2 - 1 & 0 \\ 1/2 & 1 - 1 \end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix} -1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \overrightarrow{x} = 0$$

$$\begin{bmatrix} 1/2 & 1/2 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0$$



Eigen-vals/vectors/spaces

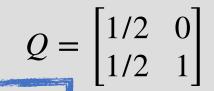
The matrix Q has the Eigen-vector

Associated with eigenvalue $\lambda_1 = 1/2$

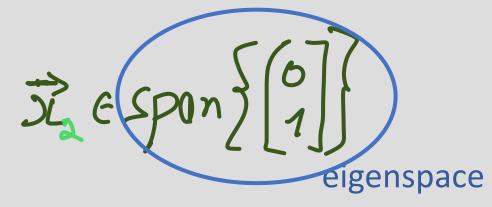
$$\overrightarrow{v} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/2 \cdot 2 + 0(-2) \\ 1/2 \cdot 2 + 1(-2) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$Q\overrightarrow{v} = 1/2\overrightarrow{v}$$



has the Eigen-vector

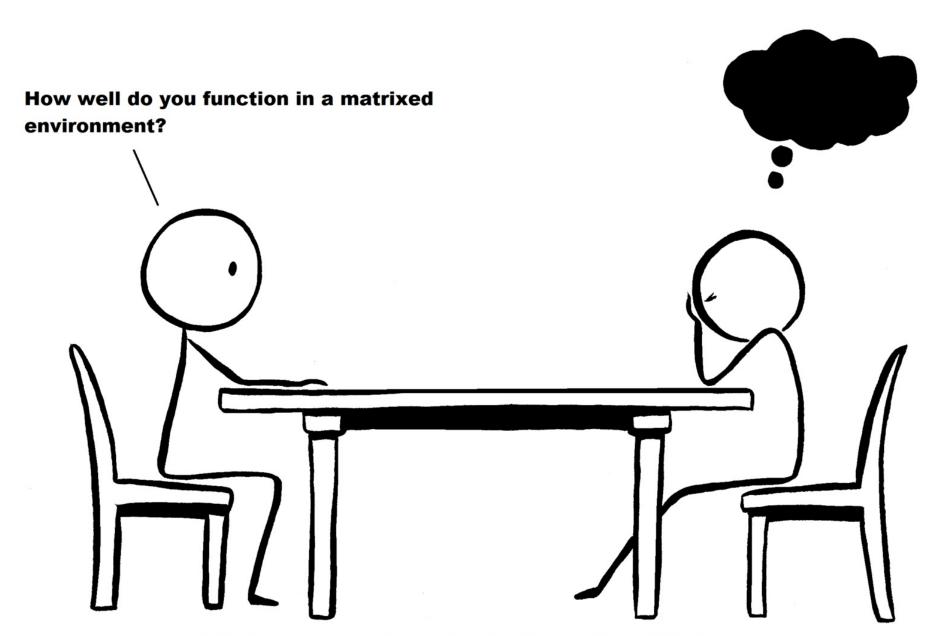


Associated with eigenvalue $\lambda_2 = 1$

$$\overrightarrow{u} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1/2 & 0 \\ 1/2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/2 \cdot 0 + 0(2) \\ 1/2 \cdot 0 + 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$Q\overrightarrow{u} = 1 \cdot \overrightarrow{u}$$



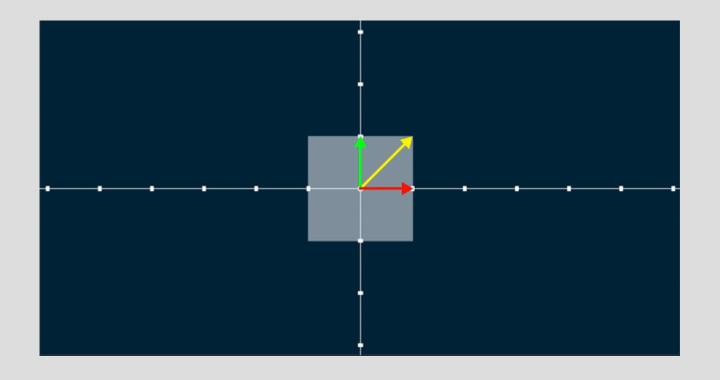
* So long as my eigenvalue is always 1, just fine.

snrky.com

What does the matrix do?

What is the A matrix?

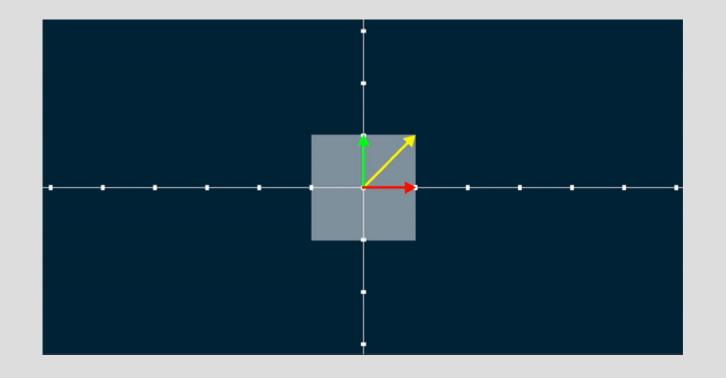
What are its eigenvectors?



What does the matrix do?

What is the A matrix?

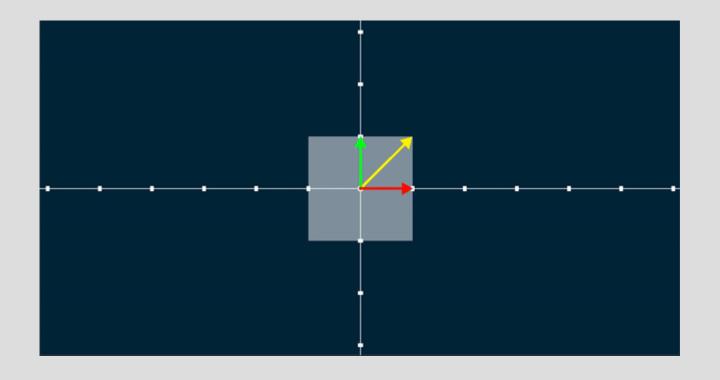
What are its eigenvectors?



What does the matrix do?

What is the A matrix?

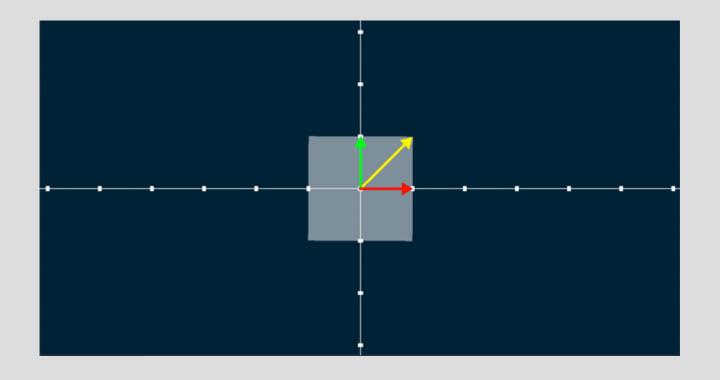
What are its eigenvectors?



What does the matrix do?

What is the A matrix?

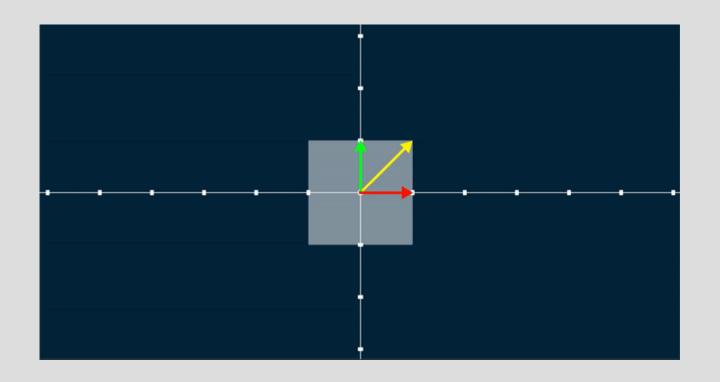
What are its eigenvectors?



What does the matrix do?

What is the A matrix?

What are its eigenvectors?



For a matrix that flips (reflects) vectors along a line:

What is the A matrix?

What are its eigenvectors?

